86 resultados para Lie detectors and detection
Resumo:
Self-absorption of the Eu2+ emission is an important aspect in SrI2:Eu that affects its scintillation performance. To calculate the probability of self-absorption, we measured the light yield and the decay time of 1–15 mm thick SrI2:2%Eu samples at temperatures between 78 K and 600 K. The obtained properties of SrI2:2%Eu crystals were then compared to those of SrI2:5%Eu. The decay times of SrI2:5%Eu crystals were the same or somewhat longer compared to those of twice as thickSrI2:2%Eu crystals. Accordingly, doubling the thickness has the same effect on the probability of self-absorption as doubling the Eu concentration.
Resumo:
OBJECTIVES This study prospectively evaluated the role of a novel 3-dimensional, noninvasive, beat-by-beat mapping system, Electrocardiographic Mapping (ECM), in facilitating the diagnosis of atrial tachycardias (AT). BACKGROUND Conventional 12-lead electrocardiogram, a widely used noninvasive tool in clinical arrhythmia practice, has diagnostic limitations. METHODS Various AT (de novo and post-atrial fibrillation ablation) were mapped using ECM followed by standard-of-care electrophysiological mapping and ablation in 52 patients. The ECM consisted of recording body surface electrograms from a 252-electrode-vest placed on the torso combined with computed tomography-scan-based biatrial anatomy (CardioInsight Inc., Cleveland, Ohio). We evaluated the feasibility of this system in defining the mechanism of AT-macro-re-entrant (perimitral, cavotricuspid isthmus-dependent, and roof-dependent circuits) versus centrifugal (focal-source) activation-and the location of arrhythmia in centrifugal AT. The accuracy of the noninvasive diagnosis and detection of ablation targets was evaluated vis-à-vis subsequent invasive mapping and successful ablation. RESULTS Comparison between ECM and electrophysiological diagnosis could be accomplished in 48 patients (48 AT) but was not possible in 4 patients where the AT mechanism changed to another AT (n = 1), atrial fibrillation (n = 1), or sinus rhythm (n = 2) during the electrophysiological procedure. ECM correctly diagnosed AT mechanisms in 44 of 48 (92%) AT: macro-re-entry in 23 of 27; and focal-onset with centrifugal activation in 21 of 21. The region of interest for focal AT perfectly matched in 21 of 21 (100%) AT. The 2:1 ventricular conduction and low-amplitude P waves challenged the diagnosis of 4 of 27 macro-re-entrant (perimitral) AT that can be overcome by injecting atrioventricular node blockers and signal averaging, respectively. CONCLUSIONS This prospective multicenter series shows a high success rate of ECM in accurately diagnosing the mechanism of AT and the location of focal arrhythmia. Intraprocedural use of the system and its application to atrial fibrillation mapping is under way.
Resumo:
The occurrence of gaseous pollutants in soils has stimulated many experimental activities, including forced ventilation in the field as well as laboratory transport experiments with gases. The dispersion coefficient in advective-dispersive gas phase transport is often dominated by molecular diffusion, which leads to a large overall dispersivity gamma. Under such conditions it is important to distinguish between flux and resident modes of solute injection and detection. The influence of the inlet type oil the macroscopic injection mode was tested in two series of column experiments with gases at different mean flow velocities nu. First we compared infinite resident and flux injections, and second, semi-infinite resident and flux injections. It is shown that the macroscopically apparent injection condition depends on the geometry of the inlet section. A reduction of the cross-sectional area of the inlet relative to that of the column is very effective in excluding the diffusive solute input, thus allowing us to use the solutions for a flux Injection also at rather low mean flow velocities nu. If the whole cross section of a column is exposed to a large reservoir like that of ambient air, a semi-infinite resident injection is established, which can be distinguished from a flux injection even at relatively high velocities nu, depending on the mechanical dispersivity of the porous medium.
Resumo:
This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.
Resumo:
The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.
Resumo:
In this paper we present the results from the coverage and the orbit determination accuracy simulations performed within the recently completed ESA study “Assessment Study for Space Based Space Surveillance (SBSS) Demonstration System” (Airbus Defence and Space consortium). This study consisted in investigating the capability of a space based optical sensor (SBSS) orbiting in low Earth orbit (LEO) to detect and track objects in GEO (geosynchronous orbit), MEO (medium Earth orbit) and LEO and to determinate and improve initial orbits from such observations. Space based systems may achieve better observation conditions than ground based sensors in terms of astrometric accuracy, detection coverage, and timeliness. The primary observation mode of the proposed SBSS demonstrator is GEO surveillance, i.e. the systematic search and detection of unknown and known objects. GEO orbits are specific and unique orbits from dynamical point of view. A space-based sensor may scan the whole GEO ring within one sidereal day if the orbit and pointing directions are chosen properly. For an efficient survey, our goal was to develop a leak-proof GEO fence strategy. Collaterally, we show that also MEO, LEO and other (GTO,Molniya, etc.) objects would be possible to observe by the system and for a considerable number of LEO objects to down to size of 1 cm we can obtain meaningful statistical data for improvement and validation of space debris environment models
Resumo:
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
Resumo:
The purpose of the present study was to investigate whether serous fluids, blood, cerebrospinal fluid (CSF), and putrefied CSF can be characterized and differentiated in synthetically calculated magnetic resonance (MR) images based on their quantitative T 1, T 2, and proton density (PD) values. Images from 55 postmortem short axis cardiac and 31 axial brain 1.5-T MR examinations were quantified using a quantification sequence. Serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF were analyzed for their mean T 1, T 2, and PD values. Body core temperature was measured during the MRI scans. The fluid-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot as well as in statistical analysis, the quantitative T 1, T 2 and PD values of serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF could be well differentiated from each other. The quantitative T 1 and T 2 values were temperature-dependent. Correction of quantitative values to a temperature of 37 °C resulted in significantly better discrimination between all investigated fluid mediums. We conclude that postmortem 1.5-T MR quantification is feasible to discriminate between blood, serous fluids, CSF, and putrefied CSF. This finding provides a basis for the computer-aided diagnosis and detection of fluids and hemorrhages.
Resumo:
Staphylococcus aureus is globally one of the most important pathogens causing contagious mastitis in cattle. Previous studies, however, have demonstrated in Swiss cows that Staph. aureus isolated from bovine intramammary infection is genetically heterogeneous, with Staph. aureus genotype B (GTB) and GTC being the most prominent genotypes. In addition, Staph. aureus GTB was found to be contagious, whereas Staph. aureus GTC and all the remaining genotypes were involved in individual cow disease. The aim of this study was to subtype strains of Staph. aureus isolated from bovine mastitic milk and bulk tank milk to obtain a unified view of the presence of bovine staphylococcal subtypes in 12 European countries. A total of 456 strains of Staph. aureus were subjected to different typing methods: ribosomal spacer PCR, detection of enterotoxin genes, and detection of gene polymorphisms (lukE, coa). Major genotypes with their variants were combined into genotypic clusters (CL). This study revealed 5 major CL representing 76% of all strains and comprised CLB, CLC, CLF, CLI, and CLR. The clusters were characterized by the same genetic properties as the Swiss isolates, demonstrating high clonality of bovine Staph. aureus. Interestingly, CLB was situated in central Europe whereas the other CL were widely disseminated. The remaining 24% of the strains comprised 41 genotypes and variants, some of which (GTAM, GTBG) were restricted to certain countries; many others, however, were observed only once.
Resumo:
The long-lived radionuclide 129I (T 1/2 = 15.7 My) occurs in the nature in very low concentrations. Since the middle of our century the environmental levels of 129I have been dramatically changed as a consequence of civil and military use of nuclear fission. Its investigation in environmental materials is of interest for environmental surveillance, retrospective dosimetry and for the use as a natural and man-made fracers of environmental processes. We are comparing two analytical methods which presently are capable of determining 129I in environmental materials, namely radiochemical neutron activation analysis (RNAA) and accelerator mass spectrometry (AMS). Emphasis is laid upon the quality control and detection capabilities for the analysis of 129I in environmental materials. Some applications are discussed.