111 resultados para Lattice QCD
Resumo:
We present an update of our determination of the strong coupling αs from the quantum chromodynamics static energy. This updated analysis includes new lattice data, at smaller lattice spacings and reaching shorter distances, the use of better suited perturbative expressions to compare with data in a wider distance range, and a comprehensive and detailed estimate of the error sources that contribute to the uncertainty of the final result. Our updated value for αs at the Z-mass scale, MZ, is αs(MZ)=0.1166+0.0012−0.0008, which supersedes our previous result.
Resumo:
Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.
Resumo:
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark–gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include ↔ scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
Resumo:
We explore the nature of the bulk transition observed at strong coupling in the SU(3) gauge theory with Nf=12 fermions in the fundamental representation. The transition separates a weak coupling chirally symmetric phase from a strong coupling chirally broken phase and is compatible with the scenario where conformality is restored by increasing the flavour content of a non abelian gauge theory. We explore the intriguing possibility that the observed bulk transition is associated with the occurrence of an ultraviolet fixed point (UVFP) at strong coupling, where a new theory emerges in the continuum.