55 resultados para Kohl
Resumo:
Die Behandlung der vorderen Kreuzbandverletzung stellt die Chirurgie seit vielen Jahren vor grosse Herausforderungen. Die Geschichte der Kreuzbandchirurgie ist im Wesentlichen geprägt von der Suche nach dem perfekten Transplantat und dem operativen Fortschritt. In diesem Übersichtssartikel werden die aktuellen chirurgischen Strategien erörtert und ein Blick in die Zukunft gewagt.
Resumo:
BACKGROUND Anterior cruciate ligament (ACL) rupture is a common lesion. Current treatment emphasizes arthroscopic ACL reconstruction via a graft, although this approach is associated with potential drawbacks. A new method of dynamic intraligamentary stabilization (DIS) was subjected to biomechanical analysis to determine whether it provides the necessary knee stability for optimal ACL healing. METHODS Six human knees from cadavers were harvested. The patellar tendon, joint capsule and all muscular attachments to the tibia and femur were removed, leaving the collateral and the cruciate ligaments intact. The knees were stabilized and the ACL kinematics analyzed. Anterior-posterior (AP) stability measurements evaluated the knees in the following conditions: (i) intact ACL, (ii) ACL rupture, (iii) ACL rupture with primary stabilization, (iv) primary stabilization after 50 motion cycles, (v) ACL rupture with DIS, and (vi) DIS after 50 motion cycles. RESULTS After primary suture stabilization, average AP laxity was 3.2mm, which increased to an average of 11.26mm after 50 movement cycles. With primary ACL stabilization using DIS, however, average laxity values were consistently lower than those of the intact ligament, increasing from an initial AP laxity of 3.00mm to just 3.2mm after 50 movement cycles. CONCLUSIONS Dynamic intraligamentary stabilization established and maintained close contact between the two ends of the ruptured ACL, thus ensuring optimal conditions for potential healing after primary reconstruction. The present ex vivo findings show that the DIS technique is able to restore AP stability of the knee.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
BACKGROUND: Despite its limitations, citation analysis remains one of the best currently available tools for quantifying the impact of articles. Bibliometric studies list the "best-sellers" in a single location, and they have been published frequently in many fields during recent years. The purpose of the present study was to report the qualities and characteristics of citation classics in orthopaedic knee research. METHODS: The database of the Institute for Scientific Information (ISI) was utilized for identification of articles published from 1945 to March 2014. All knee articles that had been published in sixty-five orthopaedic and twenty-nine rheumatology journals and that had been cited at least 200 times were identified. The top 100 were selected for further analysis of authorship, source journal, number of citations, citation rate (both since publication and in 2013), geographic origin, article type, and level of evidence. RESULTS: The publication dates of the 100 most-cited articles ranged from 1948 to 2007, with the greatest number of articles published in the 1980s. Citations per article ranged from 2640 to 287. All articles were published in eleven of the ninety-four journals. The leading countries of origin were the U.S. followed by the U.K. and Sweden. The two main focus areas were sports traumatology and degenerative disease. The number of citations per article was also greatest for articles published in the 1980s. Basic research articles were cited more quickly, but not more often, than clinical articles. Most articles represented Level-IV evidence, followed by Levels II, III, and I. CONCLUSIONS: This bibliometric study is likely to include a list of intellectual milestones in orthopaedic knee research. It is apparent that a high level of evidence is not mandatory for an article to gain a large number of citations. Bibliometric reports provide a reflection of the quality of cited research published in a specific field and should therefore provoke thinking within the scientific community.
Resumo:
Many studies in the field of cell-based cartilage repair have focused on identifying markers associated with the differentiation status of human articular chondrocytes (HAC) that could predict their chondrogenic potency. A previous study from our group showed a correlation between the expression of S100 protein in HAC and their chondrogenic potential. The aims of the current study were to clarify which S100 proteins are associated with HAC differentiation status and to provide an S100-based assay for measuring HAC chondrogenic potential. The expression patterns of S100A1 and S100B were investigated in cartilage and in HAC cultured under conditions promoting dedifferentiation (monolayer culture) or redifferentiation (pellet culture or BMP4 treatment in monolayer culture), using characterized antibodies specifically recognizing S100A1 and S100B, by immunohistochemistry, immunocytochemistry, Western blot, and gene expression analysis. S100A1 and S100B were expressed homogeneously in all cartilage zones, and decreased during dedifferentiation. S100A1, but not S100B, was re-expressed in pellets and co-localized with collagen II. Gene expression analysis revealed concomitant modulation of S100A1, S100B, collagen type II, and aggrecan: down-regulation during monolayer culture and up-regulation upon BMP4 treatment. These results strongly support an association of S100A1, and to a lesser extent S100B, with the HAC differentiated phenotype. To facilitate their potential application, we established an S100A1/B-based flow cytometry assay for accurate assessment of HAC differentiation status. We propose S100A1 and S100B expression as a marker to develop potency assays for cartilage regeneration cell therapies, and as a redifferentiation readout in monolayer cultures aiming to investigate stimuli for chondrogenic induction.
Resumo:
BACKGROUND Finding the right balance between tibial coverage and minimal implant overhang is an important factor in TKA. Another significant cause of failure is component malrotation. METHODS An average master shape of the proximal tibia at TKA resection level was calculated using fine slice computed tomographies of 117 cadaveric knees. To find out whether alternate implant contours would be necessary depending on the patient's body size, we established five subgroups to compare. CAD-Analysis was performed to simulate the overhang produced after ±4°/±7°/±10° rotation. RESULTS A master shape for the tibial resection cut (with a 5° posterior slope, 7 mm under lateral joint line) could be determined. Neither left vs. right knee joint, nor male vs. female nor the size subdivision appears to alter the calculated master shape significantly. The optimized shape allowing for ±4° of rotational freedom was found to be the best variant. CONCLUSIONS Valid methods have been obtained to design a two-dimensional average shape of the tibial plateau. The modifications described in this study might come in useful, when designing future implant designs. CLINICAL RELEVANCE An optimized fit at the tibial plateau and lower rates of component malrotation may result in better outcomes after TKA.
Resumo:
Osteoarthritis of the knee is a major clinical burden. Recent decades have witnessed an improved understanding of knee physiology and kinematics, which has led to the introduction of a wide range of enhanced prosthetic implant designs for a variety of indications. However, the increase in the number of procedures performed annually has led to complications being encountered at higher rates than ever before, requiring the development of optimised therapeutic strategies. The future holds several promising options, primarily in the treatment of early osteoarthritis, biological therapy, surgical navigation and patient-specific implants. This review provides an insight into the current options of knee arthroplasty, with emphasis on available designs, and examines the complications that may be encountered.
Resumo:
BACKGROUND Traumatic knee dislocation represents a rare but devastating injury. Several controversies persist regarding type of treatment, surgical timing, graft selection, repair versus reconstruction of the medial and lateral structures, surgical techniques and postoperative rehabilitation. A new technique for primary ACL stabilization, dynamic intaligamentary stabilization (DIS) was developed at the authors' institution. The purpose of this study was to analyze the clinical and radiological outcomes of surgically treated traumatic knee dislocations by means of the DIS technique for the ACL, primary suturing for PCL, MCL and LCL. METHODS Between 2009 and 2012, 35 patients treated surgically for traumatic knee dislocation with primary anterior cruciate ligament (ACL) reconstruction with DIS, suturing of the posterior cruciate ligament (PCL) and primary complete repair of collaterals, were evaluated clinically (IKDC score, SF12 health survey, Lysholm score, Tegner score) and radiologically with a mean follow up of 2.2 years (range 1.00-3.50 years) years. Instrumented anterior-posterior translation was measured (KT-2000). RESULTS Anterior/posterior translation (KT-2000) for the healthy and injured limb was 4.8mm (range 3-8mm) and 7.3mm (range 5-10) (89N) respectively. Valgus and varus stress testing in 30° flexion was normal in 26 (75%) and 29 (83%) patients, respectively. The IKDC score was B in 29 (83%) and C in 6 (17%) patients, while the mean Tegner score was 6 (range 4-8). The mean Lysholm score was 90.83 (range 81-95) and mean SF-12 physical and mental scores were 54.1 (range 45-60) and 51.0 (range 39-62) respectively. In 2 patients, a secondary operation was performed. CONCLUSIONS Early, one stage reconstruction with DIS can achieve good functional results and patient satisfaction with overall restoration of sports and working capacity without graft requirements.
Resumo:
Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy applicable and powerful tool to identify trochlea dysplasia in newborns and might be used for screening for trochlea dysplasia.
Resumo:
PURPOSE Dynamic intraligamentary stabilization was recently proposed as an option for the treatment of acute ACL ruptures. The aim of this study was to investigate the feasibility of the procedure in mid-substance ACL ruptures and examine whether the additional application of a bilayer collagen I/III membrane would provide for a superior outcome. METHODS The study group consisted of patients presenting with a mid-substance ACL rupture undergoing dynamic intraligamentary stabilization using the Ligamys™ device along with application of a collagen I/III membrane to the surface of the ACL (group A, n = 23). The control group comprised a matched series of patients presenting with a mid-substance ACL rupture also treated by dynamic intraligamentary stabilization Ligamys™ repair, however, without additional collagen application (group B, n = 33). Patients were evaluated preoperatively and at 24-month follow-up for stability as well as Tegner and Lysholm scores. Knee laxity was measured as a difference in anterior translation (ΔAP) and pivot shift. Any events occurring during the follow-up period of 24 months were documented. Logistic regression of complications was performed, and adjustment undertaken where necessary. RESULTS A high total complication rate of 78.8 % was noted in group B, compared to group A (8.7 %) (p = 0.002). The addition of a collagen membrane was the only independent prognostic factor associated with reduced complications (OR 8.0, CI 2.0-32.2, p = 0.003, for collagen-free treatment). In group B, 6 patients suffered a re-rupture with subsequent instability requiring secondary hamstring reconstruction surgery, and 11 developed extension loss requiring arthroscopic debridement, whilst in group A, 2 patients required arthroscopic debridement for loss of exension, with no further encountered complication. Median Lysholm score was significantly higher in group A compared to group B (median 100 range 93-100 vs median 95 range 60-100, p = 0.03) at final follow-up. CONCLUSIONS A high complication rate following ACL Ligamys™ repair of mid-substance ruptures was noted. Application of a collagen membrane to the surface of the ACL resulted in a reduced incidence of extension deficit and re-ruptures. The results indicate that solitary ACL Ligamys™ repair does not present an appropriate treatment modality for mid-substance ACL ruptures. Collage application proved to provide healing benefits with superior clinical outcome after ACL repair. LEVEL OF EVIDENCE Case control study, Level III.