32 resultados para Knock out
Resumo:
In a mouse tumour model for hereditary breast cancer, we previously explored the anti-cancer effects of docetaxel, ritonavir and the combination of both and studied the effect of ritonavir on the intratumoural concentration of docetaxel. The objective of the current study was to apply pharmacokinetic (PK)-pharmacodynamic (PD) modelling on this previous study to further elucidate and quantify the effects of docetaxel when co-administered with ritonavir. PK models of docetaxel and ritonavir in plasma and in tumour were developed. The effect of ritonavir on docetaxel concentration in the systemic circulation of Cyp3a knock-out mice and in the implanted tumour (with inherent Cyp3a expression) was studied, respectively. Subsequently, we designed a tumour growth inhibition model that included the inhibitory effects of both docetaxel and ritonavir. Ritonavir decreased docetaxel systemic clearance with 8% (relative standard error 0.4%) in the co-treated group compared to that in the docetaxel only-treated group. The docetaxel concentration in tumour tissues was significantly increased by ritonavir with mean area under the concentration-time curve 2.5-fold higher when combined with ritonavir. Observed tumour volume profiles in mice could be properly described by the PK/PD model. In the co-treated group, the enhanced anti-tumour effect was mainly due to increased docetaxel tumour concentration; however, we demonstrated a small but significant anti-tumour effect of ritonavir addition (p value <0.001). In conclusion, we showed that the increased anti-tumour effect observed when docetaxel is combined with ritonavir is mainly caused by enhanced docetaxel tumour concentration and to a minor extent by a direct anti-tumour effect of ritonavir.
Resumo:
BACKGROUND: Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. RESULTS: We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. CONCLUSION: The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases.