89 resultados para Junctions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncocytomas are defined as tumors containing in excess of 50% large mitochondrion-rich cells, irrespective of histogenesis and dignity. Along the central neuraxis, oncocytomas are distinctly uncommon but relevant to the differential diagnosis of neoplasia marked by prominent cytoplasmic granularity. We describe an anaplastic ependymoma (WHO grade III) with a prevailing oncocytic component that was surgically resected from the right fronto-insular region of a 43-year-old female. Preoperative imaging showed a fairly circumscribed, partly cystic, contrast-enhancing mass of 2 cm × 2 cm × 1.7 cm. Histology revealed a biphasic neoplasm wherein conventional ependymal features coexisted with plump epithelioid cells replete with brightly eosinophilic granules. Whereas both components displayed an overtly ependymal immunophenotype, including positivity for S100 protein and GFAP, as well as "dot-like" staining for EMA, the oncocytic population also tended to intensely react with the antimitochondrial antibody 113-1. Conversely, failure to bind CD68 indicated absence of significant lysosomal storage. Negative reactions for both pan-cytokeratin (MNF 116) and low molecular weight cytokeratin (CAM 5.2), as well as synaptophysin and thyroglobulin, further assisted in ruling out metastatic carcinoma. In addition to confirming the presence of "zipper-like" intercellular junctions and microvillus-bearing cytoplasmic microlumina, electron microscopy allowed for the pervasive accumulation of mitochondria in tumor cells to be directly visualized. A previously not documented variant, oncocytic ependymoma, is felt to add a reasonably relevant novel item to the differential diagnosis of granule-bearing central nervous system neoplasia, in particular oncocytic meningioma, granular cell astrocytoma, as well as metastatic deposits by oncocytic malignancies from extracranial sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Important insights into the molecular mechanism of T cell extravasation across the blood-brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally suited as in vitro models with which to study the cellular and molecular mechanisms of T cell extravasation across the BBB. We found that both in vitro BBB models equally supported both T cell adhesion under static and physiologic flow conditions, and T cell crawling on the endothelial surface against the direction of flow. In contrast, distances of T cell crawling on pMBMECs were strikingly longer than on bEnd5, whereas diapedesis of T cells across pMBMECs was dramatically reduced compared with bEnd5. Thus, both in vitro BBB models are suited to study T cell adhesion. However, because pMBMECs better reflect endothelial BBB specialization in vivo, we propose that more reliable information about the cellular and molecular mechanisms of T cell diapedesis across the BBB can be attained using pMBMECs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perineurioma is an uncommon, mostly benign, spindle-cell tumor of peripheral nerve sheath origin with a predilection for the soft tissues. Although increasing awareness points to the sites of involvement by perineurioma possibly being as ubiquitous as those frequented by schwannian tumors, only one intracerebral example has been described to date. We report on a surgically resected perineurioma of the falx cerebri in an 86-year-old woman. Preoperative imaging showed an enhancing extraaxial mass of 6 cm × 5.7 cm × 3.7 cm. Histologically, the tumor consisted of a proliferation of spindle cells interwoven by a lattice of basal lamina. Alongside a prevailing soft tissue perineurioma pattern, sclerosing and reticular areas were seen as well. Tumor cells coexpressed EMA and GLUT-1, and a minority immunoreacted for smooth muscle actin. Pericellular basal lamina was decorated with collagen type IV. No staining for S100 protein was detected. Mitotic activity was virtually absent, and the MIB1 labeling index averaged 2%. Ultrastructural examination revealed abundant pinocytotic vesicles within and conspicuous tight junctions between slender cytoplasmic processes which, in turn, were encased by discontinuous basal lamina. FISH analysis confirmed loss of at least part of one chromosome 22q. This observation calls attention to perineurioma as a novel item in the repertoire of low-grade meningial spindle cell neoplasms, in the differential diagnostic context of which it is apt to being misconstrued as either meningioma, solitary fibrous tumor, or neurofibroma. Confusion with the latter bears the risk of overgrading innocuous features of perineurioma as criteria for malignancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spindle cell oncocytoma (SCO) is a rare, non-adenomatous tumor originating from the anterior pituitary gland. Composed of fusiform, mitochondrion-rich cells sharing several immunophenotypic and ultrastructural properties with folliculo-stellate cells (FSC), SCO has been proposed to represent a neoplastic counterpart of the latter. To date, however, SCO has failed to meet one criterion commonly used in histological-based taxonomy and diagnostics; that of recapitulating any of FSCs' morphologically defined developmental or physiological states. We describe a unique example of SCO wherein a conventional fascicular texture was seen coexisting with and organically merging into follicle-like arrangements. The sellar tumor of 2.7 × 2.6 × 2.5 cm was transphenoidally resected from a 55-year old female. Preoperative magnetic resonance imaging indicated an isointense, contrast enhancing mass with suprasellar extension. Histology showed multiple rudimentary to well-formed, follicle-like cavities on a classical spindle cell background; while all the participating cells exhibited an SCO immunophenotype, including positivity for S100 protein, vimentin, EMA, Bcl-2, and TTF-1, as well as staining with the antimitochondrial antibody 113-1. Conversely no expression of GFAP, follicular-epithelial cytokeratin, carcinoembryonic antigen, or anterior pituitary hormones was detected. Ultrastructurally, tumor cells facing follicular lumina displayed organelles of epithelial specialization, in particular surface microvilli and apical tight junctions. This constellation is felt to be reminiscent of FSCs' metaplastic transition to follicular epithelium, as observed during embryonic development and physiological renewal of the hormone-secreting parenchyma. Such finding is apt to being read as a supporting argument for SCO's descent from the FSC lineage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain microvascular endothelium forms an active permeability barrier, the blood-brain barrier (BBB). In neurologic disorders, barrier properties of the BBB are often lost indicating their dependance on molecular cues of the brain microenvironment. In this issue, Osada et al demonstrate that the endothelial extracellular matrix (ECM) provides one of these cues. Their study shows that β1-integrin-mediated adhesion of brain endothelial cells to the surrounding ECM is critical for stabilizing claudin-5 in BBB tight junctions (TJs) and BBB integrity. These observations point to a novel intracellular signaling pathway from β1-integrin/ECM endothelial adhesions to BBB TJs contributing to BBB integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated structural aspects of electron transfer (ET) in tunneling junctions (Au(1 1 1)vertical bar FcN vertical bar solution gap vertical bar Au STM tip) with four different redox-active N-thioalk(ano)ylferrocenes (FcN) embedded. The investigated molecules consist of a redox-active ferrocene (Fc) moiety connected via alkyl spacers with N = 4, 6, 8 and 11 carbon atoms to a thiol anchoring group. We found that for short FcNs (N = 4, 6,8) the redox-mediated ET response increases with the increase of the alkyl chain length, while no enhancement of the ET was observed for Fc1 1. The model of two-step ET with partial vibrational relaxation by Kuznetsov and Ulstrup was used to rationalize these results. The theoretical ET steps were assigned to two processes: (1) electron tunneling from the Fc group to the Au tip through the electrolyte layer and (2) electron transport from the Au(1 1 1) substrate to the Fc group through the organic adlayer. We argue that for the three short FcNs, the first process represents the rate-limiting step. The increase of the length of the alkyl chain leads to an approach of the Fc group to the STM tip, and consequently accelerates the first El' step. In case of the Fcl 1 junctions the rather high thickness of the organic layer leads to a decrease of the rate of the second ET step. In consequence, the contribution of the redox-mediated current enhancement to the total tunneling current appears to be insignificant. Our work demonstrates the importance of combined structural and transport approaches for the understanding of Er processes in electrochemical nanosystems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the plakoglobin (JUP) gene have been identified in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients. However, the mechanisms underlying plakoglobin dysfunction involved in the pathogenesis of ARVC remain poorly understood. Plakoglobin is a component of both desmosomes and adherens junctions located at the intercalated disc (ICD) of cardiomyocytes, where it functions to link cadherins to the cytoskeleton. In addition, plakoglobin functions as a signaling protein via its ability to modulate the Wnt/beta-catenin signaling pathway. To investigate the role of plakoglobin in ARVC, we generated an inducible cardiorestricted knockout (CKO) of the plakoglobin gene in mice. Plakoglobin CKO mice exhibited progressive loss of cardiac myocytes, extensive inflammatory infiltration, fibrous tissue replacement, and cardiac dysfunction similar to those of ARVC patients. Desmosomal proteins from the ICD were decreased, consistent with altered desmosome ultrastructure in plakoglobin CKO hearts. Despite gap junction remodeling, plakoglobin CKO hearts were refractory to induced arrhythmias. Ablation of plakoglobin caused increase beta-catenin stabilization associated with activated AKT and inhibition of glycogen synthase kinase 3beta. Finally, beta-catenin/TCF transcriptional activity may contribute to the cardiac hypertrophy response in plakoglobin CKO mice. This novel model of ARVC demonstrates for the first time how plakoglobin affects beta-catenin activity in the heart and its implications for disease pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background We present a compendium of N-ethyl-N-nitrosourea (ENU)-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1) to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2) to assess the characteristics of these mutations; and 3) to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype. Findings In the context of an ENU mutagenesis program for C57BL/6J mice, a total of 185 phenotypes were tracked to mutations in 129 genes. In addition, 402 incidental mutations were identified and predicted to affect 390 genes. As previously reported, ENU shows strand asymmetry in its induction of mutations, particularly favoring T to A rather than A to T in the sense strand of coding regions and splice junctions. Some amino acid substitutions are far more likely to be damaging than others, and some are far more likely to be observed. Indeed, from among a total of 494 non-synonymous coding mutations, ENU was observed to create only 114 of the 182 possible amino acid substitutions that single base changes can achieve. Based on differences in overt null allele frequencies observed in phenotypic vs. non-phenotypic mutation sets, we infer that ENU-induced missense mutations create detectable phenotype only about 1 in 4.7 times. While the remaining mutations may not be functionally neutral, they are, on average, beneath the limits of detection of the phenotypic assays we applied. Conclusions Collectively, these mutations add to our understanding of the chemical specificity of ENU, the types of amino acid substitutions it creates, and its efficiency in causing phenovariance. Our data support the validity of computational algorithms for the prediction of damage caused by amino acid substitutions, and may lead to refined predictions as to whether specific amino acid changes are responsible for observed phenotypes. These data form the basis for closer in silico estimations of the number of genes mutated to a state of phenovariance by ENU within a population of G3 mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The descriptive term hybrid peripheral nerve sheath tumor refers to any neoplasm of the neurilemmal apparatus composed of more than one pathologically defined tumoral equivalent derived from its constituent cells. Within this uncommon nosological category, participation of granular cell tumor - a neoplasm of modified Schwann cells - has been reported only exceptionally. We describe a hitherto not documented variant composed of an organoid mixture of granular cell tumor and perineurioma with plexiform growth. A solitary subcutaneous nodule of 1.5 cm diameter was excised from the right ring finger of a 19-year-old female with no antecedents of neurofibromatosis or relevant trauma. Histology revealed a monotonous, yet cytologically dimorphic proliferation of classical granular cells intermingled with flattened, inconspicuous perineurial cells. Immunohistochemical double labeling detected expression of S100 protein in the former and of EMA and GLUT-1 in the latter. While the respective staining patterns for S100 protein and EMA or GLUT-1 tended to be mutually exclusive, a minority of cells exhibited transitional granular cell/perineurial immunophenotype. Electron microscopy permitted direct visualization of a plethora of lysosomes in the granular cell moiety, and of pinocytotic vesicles and tight junctions in perineurial cells. Intratumoral axons were not detected. Expanding intraneurally, the lesion showed discrete encapsulation by the local perineurium, and resulted in plexiform growth. The MIB-1 labeling index averaged 1%. We interpret our findings as supporting evidence for the dual cell lineage to have arisen through metaplasia, with the tumor's dynamics probably having been driven by the granular cell component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defects in urothelial integrity resulting in leakage and activation of underlying sensory nerves are potential causative factors of bladder pain syndrome, a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. Herein, we identified the microRNA miR-199a-5p as an important regulator of intercellular junctions. On overexpression in urothelial cells, it impairs correct tight junction formation and leads to increased permeability. miR-199a-5p directly targets mRNAs encoding LIN7C, ARHGAP12, PALS1, RND1, and PVRL1 and attenuates their expression levels to a similar extent. Using laser microdissection, we showed that miR-199a-5p is predominantly expressed in bladder smooth muscle but that it is also detected in mature bladder urothelium and primary urothelial cultures. In the urothelium, its expression can be up-regulated after activation of cAMP signaling pathways. While validating miR-199a-5p targets, we delineated novel functions of LIN7C and ARHGAP12 in urothelial integrity and confirmed the essential role of PALS1 in establishing and maintaining urothelial polarity and junction assembly. The present results point to a possible link between miR-199a-5p expression and the control of urothelial permeability in bladder pain syndrome. Up-regulation of miR-199a-5p and concomitant down-regulation of its multiple targets might be detrimental to the establishment of a tight urothelial barrier, leading to chronic pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrial tissue expresses both connexin 40 (Cx40) and 43 (Cx43) proteins. To assess the relative roles of Cx40 and Cx43 in atrial electrical propagation, we synthesized cultured strands of atrial myocytes derived from mice with genetic deficiency in Cx40 or Cx43 expression and measured propagation velocity (PV) by high-resolution optical mapping of voltage-sensitive dye fluorescence. The amount of Cx40 and/or Cx43 in gap junctions was measured by immunohistochemistry and total or sarcolemmal Cx43 or Cx40 protein by immunoblotting. Progressive genetic reduction in Cx43 expression decreased PV from 34+/-6 cm/sec in Cx43(+/+) to 30+/-8 cm/sec in Cx43(+/-) and 19+/-11 cm/sec in Cx43(-/-) cultures. Concomitantly, the cell area occupied by Cx40 immunosignal in gap junctions decreased from 2.0+/-1.6% in Cx43(+/+) to 1.7+/-0.5% in Cx43(+/-) and 1.0+/-0.2% in Cx43(-/-) strands. In contrast, progressive genetic reduction in Cx40 expression increased PV from 30+/-2 cm/sec in Cx40(+/+) to 40+/-7 cm/sec in Cx40(+/-) and 45+/-10 cm/sec in Cx40(-/-) cultures. Concomitantly, the cell area occupied by Cx43 immunosignal in gap junctions increased from 1.2+/-0.9% in Cx40(+/+) to 2.8+/-1.4% in Cx40(+/-) and 3.1+/-0.6% in Cx40(-/-) cultures. In accordance with the immunostaining results, immunoblots of the Triton X-100-insoluble fraction revealed an increase of Cx43 in gap junctions in extracts from Cx40-ablated atria, whereas total cellular Cx43 remained unchanged. Our results suggest that the relative abundance of Cx43 and Cx40 is an important determinant of atrial impulse propagation in neonatal hearts, whereby dominance of Cx40 decreases and dominance of Cx43 increases local propagation velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.Journal of Investigative Dermatology advance online publication, 16 November 2006; doi:10.1038/sj.jid.5700615.