40 resultados para Intubation, Intratracheal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Etomidate is an imidazole-derived hypnotic agent preferentially used for rapid sequence induction of anaesthesia because of its favourable haemodynamic profile. However, 11β-hydroxylase inhibition causes adrenal insufficiency with potentially fatal consequences in specific populations. We review the arguments against the liberal administration of etomidate in critically ill, and especially septic, patients. This review considered only high-quality and prospective studies with a low risk of bias. Three major effects have been observed with the clinical use of a single dose of etomidate. First, independent of the clinical setting, etomidate causes adrenal dysfunction via 11β-hydroxylase inhibition ranging from 12 to 48 h, making the drug unsuitable for use in elective interventions. Second, in a systematic review with meta-analyses, including 3715 septic patients, the relative risk of death with etomidate was 1.22 (95% confidence interval 1.11 to 1.35). Based on this statistically significant and clinically relevant increase in mortality, a single dose of etomidate has to be avoided in patients with septic shock. Third, in small randomised controlled trials, a single dose of etomidate in trauma patients was associated with an increased incidence of pneumonia (56.7 vs. 25.9% in controls), prolonged intensive care stay (6.3 vs. 1.5 days) and prolonged hospital stay (11.6 vs. 6.4 days). Based on these randomised controlled trials, the use of etomidate should be avoided in unstable trauma patients. Midazolam and ketamine are two valid alternatives with similar intubation and haemodynamic conditions as etomidate but without its adverse effects. Therefore, for safety reasons, etomidate should be avoided in the critical conditions of sepsis and trauma

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. STUDY DESIGN Prospective clinical trial. ANIMALS Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. METHODS Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. RESULTS The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. CONCLUSION AND CLINICAL RELEVANCE The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs. STUDY DESIGN Prospective, randomized, 'blinded', clinical trial conducted in two consecutive phases. ANIMALS 112 client-owned dogs (ASA I or II). METHODS All animals were premedicated with intramuscular acepromazine (0.02 mg kg(-1) ) and methadone (0.2 mg kg(-1) ). In phase 1, midazolam (0.2 mg kg(-1) ) with either 3 mg kg(-1) of racemic ketamine (group K) or 1.5 mg kg(-1) of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg(-1) ) or S-ketamine (0.75 mg kg(-1) ) were administered if required. In phase 2, midazolam (0.2 mg kg(-1) ) with 1 mg kg(-1) of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute(-1) ) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures. RESULTS Demographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg(-1) S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg(-1) of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg(-1) ) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar. CONCLUSION AND CLINICAL RELEVANCE Racemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The perioperative management of patients with mediastinal masses is a special clinical challenge in our field. Even though regional anaesthesia is normally the first choice, in some cases it is not feasible due to the method of operation. In these cases general anaesthesia is the second option but can lead to respiratory and haemodynamic decompensation due to tumor-associated compression syndrome (mediastinal mass syndrome). The appropriate treatment begins with the preoperative risk classification on the basis of clinical and radiological findings. In addition to anamnesis, chest radiograph, and CT, dynamical methods (e.g. pneumotachography and echocardiography) should be applied to verify possible intraoperative compression syndromes. The induction of general anaesthesia is to be realized in awake-fiberoptic intubation with introduction of the tube via nasal route while maintaining the spontaneous breathing of the patient. The anaesthesia continues with short effective agents applied inhalative or iv. If possible from the point of operation, agents of muscle relaxation are not to be applied. If the anaesthesia risk is classified as uncertain or unsafe, depending on the location of tumor compression (tracheobronchial tree, pulmonary artery, superior vena cava), alternative techniques of securing the respiratory tract (different tubes, rigid bronchoscope) and cardiopulmonary bypass with extracorporal oxygen supply are prepared. For patients with severe clinical symptoms and extensive mediastinal mass, the preoperative cannulation of femoral vessels is also recommended. In addition to fulfilling technical and personnel requirements, an interdisciplinary cooperation of participating fields is the most important prerequisite for the optimal treatment of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) have been implemented in the etiology of pulmonary fibrosis (PF) in systemic sclerosis. In the bleomycin model, we evaluated the role of acquired mutations in mitochondrial DNA (mtDNA) and respiratory chain defects as a trigger of ROS formation and fibrogenesis. Adult male Wistar rats received a single intratracheal instillation of bleomycin and their lungs were examined at different time points. Ashcroft scores, collagen and TGFβ1 levels documented a delayed onset of PF by day 14. In contrast, increased malon dialdehyde as a marker of ROS formation was detectable as early as 24 hours after bleomycin instillation and continued to increase. At day 7, lung tissue acquired significant amounts of mtDNA deletions, translating into a significant dysfunction of mtDNA-encoded, but not nucleus-encoded respiratory chain subunits. mtDNA deletions and markers of mtDNA-encoded respiratory chain dysfunction significantly correlated with pulmonary TGFβ1 concentrations and predicted PF in a multivariate model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gebiet: Chirurgie Abstract: Background: Preservation of cardiac grafts for transplantation is not standardized and most centers use a single administration of crystalloid solution at the time of harvesting. We investigated possible benefits of an additional dose of cardioplegia dispensed immediately before implantation. – – Methods: Consecutive adult cardiac transplantations (2005?2012) were reviewed. Hearts were harvested following a standard protocol (Celsior 2L, 4?8°C). In 2008, 100 ml crys-talloid cardioplegic solution was added and administered immediately before implanta-tion. Univariate and logistic regression analyses were used to investigate risk factors for post-operative graft failure and mid-term outcome. – – Results: A total of 81 patients, 44 standard (?Cardio???) vs. 37 with additional cardiople-gia (?CardioC?) were analyzed. Recipients and donors were comparable in both groups. CardioC patients demonstrated a reduced need for defibrillation (24 vs. 48%, p D0.03), post-operative ratio of CK-MB/CK (10.1_3.9 vs. 13.3_4.2%, p D0.001), intubation time (2.0_1.6 vs. 7.2_11.5 days, p D0.05), and ICU stay (3.9_2.1 vs. 8.5_7.8 days, p D0.001). Actuarial survival was reduced when graft ischemic time was >180 min in Cardio?? but not in CardioC patients (p D0.033). Organ ischemic time >180 min (OR: 5.48, CI: 1.08?27.75), donor female gender (OR: 5.84, CI: 1.13?33.01), and recipient/donor age >60 (OR: 6.33, CI: 0.86?46.75), but not the additional cardioplegia or the observation period appeared independent predictors of post-operative acute graft failure. – – Conclusion: An additional dose of cardioplegia administered immediately before implan-tation may be a simple way to improve early and late outcome of cardiac transplantation, especially in situations of prolonged graft ischemia.A large, ideally multicentric, randomized study is desirable to verify this preliminary observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia at the surgical site impairs wound healing and oxidative killing of microbes. Surgical site infections are more common in obese patients. We hypothesized that subcutaneous oxygen tension (Psq O2 ) would decrease substantially in both obese and non-obese patients following induction of anesthesia and after surgical incision. We performed a prospective observational study that enrolled obese and non-obese surgical patients and measured serial Psq O2 before and during surgery. Seven morbidly obese and seven non-obese patients were enrolled. At baseline breathing room air, Psq O2 values were not significantly different (p=0.66) between obese (6.8 kPa) and non-obese (6.5 kPa) patients. The targeted arterial oxygen tension (40 kPa) was successfully achieved in both groups with an expected significant increase in Psq O2 (obese 16.1 kPa and non-obese 13.4 kPa; p=0.001). After induction of anesthesia and endotracheal intubation, Psq O2 did not change significantly in either cohort in comparison to levels right before induction (obese 15.5, non-obese 13.5 kPa; p=0.95), but decreased significantly during surgery (obese 10.1, non-obese 9.3 kPa; p=0.01). In both morbidly obese and non-obese patients, Psq O2 does not decrease appreciably following induction of anesthesia, but decreases markedly (∼33%) after commencement of surgery. Given the theoretical risks associated with low Psq O2 , future research should investigate how Psq O2 can be maintained after surgical incision. This article is protected by copyright. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.