41 resultados para Integration of learning
Resumo:
Knowledge processes are critical to outsourced software projects. According to outsourcing research, outsourced software projects succeed if they manage to integrate the client’s business knowledge and the vendor’s technical knowledge. In this paper, we submit that this view may not be wrong, but incomplete in a significant part of outsourced software work, which is software maintenance. Data from six software-maintenance outsourcing transitions indicate that more important than business or technical knowledge can be application knowledge, which vendor engineers acquire over time during practice. Application knowledge was the dominant knowledge during knowledge transfer activities and its acquisition enabled vendor staff to solve maintenance tasks. We discuss implications for widespread assumptions in outsourcing research.
Resumo:
BACKGROUND Neonatal screening and treatment of phenylketonuria (PKU) prevent the development of neurocognitive impairment. The degree of dysfunction may be related to metabolic control and responsible for a hampered school career. METHODS This was a retrospective study from a single metabolic unit of a Swiss University Hospital. The time point of diagnosis and all Phenylalanin (Phe) concentrations during the follow-up were recorded. The primary outcome was integration into professional life defined as no professional studies versus accomplished apprenticeship versus high school diploma/university. Phe levels were correlated with professional outcome. The control group consisted of the patients' healthy parents and siblings. RESULTS A total of 27 patients (13 females, 14 males) were included in the study. The mean (SD) follow-up period was 25.1 (7.6) years. The control group consisted of 57 subjects. Overall, 23 patients were diagnosed by neonatal screening, and 4 patients were diagnosed later. All 4 were in the non-professional study group. Compared with the controls there were significantly more patients in the non-professional study group (26% vs 9%, p <0.05) and significantly less in the accomplished apprenticeship group (59% vs 82%; p <0.04). After exclusion of the patients with late diagnosis no significant differences were found with regard to the professional integration between patients and controls. Significant differences in Phe-levels between the three groups could be documented between 2-10 years of age with the highest levels in the non-professional study followed by the accomplished apprenticeship and the high school diploma group (p <0.01). CONCLUSION Patients who are diagnosed by neonatal screening and are consequently cared for are able to accomplish an apprenticeship or a high school diploma.
Resumo:
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
Resumo:
We studied charge transport through core-substituted naphthalenediimide (NDI) single-molecule junctions using the electrochemical STM-based break-junction technique in combination with DFT calculations. Conductance switching among three well-defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential-dependence of the charge-transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double-layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single-molecule devices by controlling their redox states.
Resumo:
The conflict between nature-orientated conservation and man-orientated rural development is examined, along with the degree to which ecological research contributes to mountain development, and whether conservation areas can be protected from being areas of natural resources ultimately to be used by man in life-threatening need. A high mountain national park in Ethiopia is taken as an example within UNESCO's concept of Biosphere Reserves. The main finding is that conservation without development will fail, and therefore the focus is more on the area surrounding a national park than on the park itself. A buffer zone must be developed as an economically stable and socially secure area for man, so that his needs do not drive him to exploit the last natural resource area in his vicinity. Simen is a World Heritage Site for future generations. Man and nature, development and conservation, belong together in this unique mountain area.
Resumo:
Specification consortia and standardization bodies concentrate on e-Learning objects to en-sure reusability of content. Learning objects may be collected in a library and used for deriv-ing course offerings that are customized to the needs of different learning communities. How-ever, customization of courses is possible only if the logical dependencies between the learn-ing objects are known. Metadata for describing object relationships have been proposed in several e-Learning specifications. This paper discusses the customization potential of e-Learning objects but also the pitfalls that exist if content is customized inappropriately.
Resumo:
Migrating fibroblasts undergo contact inhibition of locomotion (CIL), a process that was discovered five decades ago and still is not fully understood at the molecular level. We identify the Slit2-Robo4-srGAP2 signaling network as a key regulator of CIL in fibroblasts. CIL involves highly dynamic contact protrusions with a specialized actin cytoskeleton that stochastically explore cell-cell overlaps between colliding fibroblasts. A membrane curvature-sensing F-BAR domain pre-localizes srGAP2 to protruding edges and terminates their extension phase in response to cell collision. A FRET-based biosensor reveals that Rac1 activity is focused in a band at the tip of contact protrusions, in contrast to the broad activation gradient in contact-free protrusions. SrGAP2 specifically controls the duration of Rac1 activity in contact protrusions, but not in contact-free protrusions. We propose that srGAP2 integrates cell edge curvature and Slit-Robo-mediated repulsive cues to fine-tune Rac1 activation dynamics in contact protrusions to spatiotemporally coordinate CIL.
Resumo:
Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.