44 resultados para Insulin Sensitivity
Resumo:
BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.
Resumo:
Specific problems in patients with insulin-dependent diabetes mellitus (IDDM) and GH deficiency are hypoglycaemic attacks, increased insulin sensitivity and loss of energy. These problems may be related to GH deficiency.
Resumo:
Abnormal lipid metabolism may be related to the increased cardiovascular risk in type 1 diabetes. Secretion and clearance rates of very low density lipoprotein (VLDL) apolipoprotein B100 (apoB) determine plasma lipid concentrations. Type 1 diabetes is characterized by increased growth hormone (GH) secretion and decreased insulin-like growth factor (IGF) I concentrations. High-dose IGF-I therapy improves the lipid profile in type 1 diabetes. This study examined the effect of low-dose (40 microg.kg(-1).day(-1)) IGF-I therapy on VLDL apoB metabolism, VLDL composition, and the GH-IGF-I axis during euglycemia in type 1 diabetes. Using a stable isotope technique, VLDL apoB kinetics were estimated before and after 1 wk of IGF-I therapy in 12 patients with type 1 diabetes in a double-blind, placebo-controlled trial. Fasting plasma triglyceride (P < 0.03), VLDL-triglyceride concentrations (P < 0.05), and the VLDL-triglyceride-to-VLDL apoB ratio (P < 0.002) significantly decreased after IGF-I therapy, whereas VLDL apoB kinetics were not significantly affected by IGF-I therapy. IGF-I therapy resulted in a significant increase in IGF-I and a significant reduction in GH concentrations. The mean overnight insulin concentrations during euglycemia decreased by 25% after IGF-I therapy. These results indicate that low-dose IGF-I therapy restores the GH-IGF-I axis in type 1 diabetes. IGF-I therapy changes fasting triglyceride concentrations and VLDL composition probably because of an increase in insulin sensitivity.
Resumo:
Type 1 diabetes is associated with abnormalities of the growth hormone (GH)-IGF-I axis. Such abnormalities include decreased circulating levels of IGF-I. We studied the effects of IGF-I therapy (40 microg x kg(-1) x day(-1)) on protein and glucose metabolism in adults with type 1 diabetes in a randomized placebo-controlled trial. A total of 12 subjects participated, and each subject was studied at baseline and after 7 days of treatment, both in the fasting state and during a hyperinsulinemic-euglycemic amino acid clamp. Protein and glucose metabolism were assessed using infusions of [1-13C]leucine and [6-6-2H2]glucose. IGF-I administration resulted in a 51% rise in circulating IGF-I levels (P < 0.005) and a 56% decrease in the mean overnight GH concentration (P < 0.05). After IGF-I treatment, a decrease in the overnight insulin requirement (0.26+/-0.07 vs. 0.17+/-0.06 U/kg, P < 0.05) and an increase in the glucose infusion requirement were observed during the hyperinsulinemic clamp (approximately 67%, P < 0.05). Basal glucose kinetics were unchanged, but an increase in insulin-stimulated peripheral glucose disposal was observed after IGF-I therapy (37+/-6 vs. 52+/-10 micromol x kg(-1) x min(-1), P < 0.05). IGF-I administration increased the basal metabolic clearance rate for leucine (approximately 28%, P < 0.05) and resulted in a net increase in leucine balance, both in the basal state and during the hyperinsulinemic amino acid clamp (-0.17+/-0.03 vs. -0.10+/-0.02, P < 0.01, and 0.25+/-0.08 vs. 0.40+/-0.06, P < 0.05, respectively). No changes in these variables were recorded in the subjects after administration of placebo. These findings demonstrated that IGF-I replacement resulted in significant alterations in glucose and protein metabolism in the basal and insulin-stimulated states. These effects were associated with increased insulin sensitivity, and they underline the major role of IGF-I in protein and glucose metabolism in type 1 diabetes.
Resumo:
BACKGROUND Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass). AIM To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy. METHODS Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO(2max)) using ¹H-MR-spectroscopy. RESULTS Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO(2max), 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (-22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity. CONCLUSIONS IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions. TRIAL REGISTRATION ClinicalTrial.gov NCT00491582.
Resumo:
AIMS/HYPOTHESIS Ectopic lipids are fuel stores in non-adipose tissues (skeletal muscle [intramyocellular lipids; IMCL], liver [intrahepatocellular lipids; IHCL] and heart [intracardiomyocellular lipids; ICCL]). IMCL can be depleted by physical activity. Preliminary data suggest that aerobic exercise increases IHCL. Data on exercise-induced changes on ICCL is scarce. Increased IMCL and IHCL have been related to insulin resistance in skeletal muscles and liver, whereas this has not been documented in the heart. The aim of this study was to assess the acute effect of aerobic exercise on the flexibility of IMCL, IHCL and ICCL in insulin-sensitive participants in relation to fat availability, insulin sensitivity and exercise capacity. METHODS Healthy physically active men were included. [Formula: see text] was assessed by spiroergometry and insulin sensitivity was calculated using the HOMA index. Visceral and subcutaneous fat were separately quantified by MRI. Following a standardised dietary fat load over 3 days, IMCL, IHCL and ICCL were measured using MR spectroscopy before and after a 2 h exercise session at 50-60% of [Formula: see text]. Metabolites were measured during exercise. RESULTS Ten men (age 28.9 ± 6.4 years, mean ± SD; [Formula: see text] 56.3 ± 6.4 ml kg(-1) min(-1); BMI 22.75 ± 1.4 kg/m(2)) were recruited. A 2 h exercise session resulted in a significant decrease in IMCL (-17 ± 22%, p = 0.008) and ICCL (-17 ± 14%, p = 0.002) and increase in IHCL (42 ± 29%, p = 0.004). No significant correlations were found between the relative changes in ectopic lipids, fat availability, insulin sensitivity, exercise capacity or changes of metabolites during exercise. CONCLUSIONS/INTERPRETATION In this group, physical exercise decreased ICCL and IMCL but increased IHCL. Fat availability, insulin sensitivity, exercise capacity and metabolites during exercise are not the only factors affecting ectopic lipids during exercise.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.
Resumo:
OBJECTIVE Vitamin D (D₃) status is reported to correlate negatively with insulin production and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). However, few placebo-controlled intervention data are available. We aimed to assess the effect of large doses of parenteral D3 on glycosylated haemoglobin (HbA(₁c)) and estimates of insulin action (homeostasis model assessment insulin resistance: HOMA-IR) in patients with stable T2DM. MATERIALS AND METHODS We performed a prospective, randomised, double-blind, placebo-controlled pilot study at a single university care setting in Switzerland. Fifty-five patients of both genders with T2DM of more than 10 years were enrolled and randomised to either 300,000 IU D₃ or placebo, intramuscularly. The primary endpoint was the intergroup difference in HbA(₁c) levels. Secondary endpoints were: changes in insulin sensitivity, albuminuria, calcium/phosphate metabolism, activity of the renin-aldosterone axis and changes in 24-hour ambulatory blood pressure values. RESULTS After 6 months of D₃ supply, there was a significant intergroup difference in the change in HbA(₁c) levels (relative change [mean ± standard deviation] +2.9% ± 1.5% in the D₃ group vs +6.9% ± 2.1% the in placebo group, p = 0.041) as HOMA-IR decreased by 12.8% ± 5.6% in the D₃ group and increased by 10% ± 5.4% in the placebo group (intergroup difference, p = 0.032). Twenty-four-hour urinary albumin excretion decreased in the D₃ group from 200 ± 41 to 126 ± 39, p = 0.021). There was no significant intergroup difference for the other secondary endpoints. CONCLUSIONS D₃ improved insulin sensitivity (based on HOMA-IR) and affected the course of HbA(₁c) positively compared with placebo in patients with T2DM.
Resumo:
Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.
Resumo:
Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.
Resumo:
Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.
Resumo:
OBJECTIVE: The associations between inflammation, diabetes and insulin resistance remain controversial. Hence, we assessed the associations between diabetes, insulin resistance (using HOMA-IR) and metabolic syndrome with the inflammatory markers high sensitivity C-reactive protein (hs-CRP), interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). DESIGN: CROSS-SECTIONAL STUDY: PARTICIPANTS: 2884 MEN AND 3201 WOMEN AGED 35 TO 75: METHODS: CRP was assessed by immunoassay and cytokines by multiplexed flow cytometric assay. In a subgroup of 532 participants an oral glucose tolerance test was performed to screen for impaired glucose tolerance (IGT). RESULTS: IL-6, TNF-α and hs-CRP were significantly and positively correlated with fasting plasma glucose, insulin and HOMA-IR. Participants with diabetes had higher IL-6, TNF-α and hs-CRP levels than participants without diabetes; this difference persisted for hs-CRP after multivariate adjustment. Participants with metabolic syndrome had increased IL-6, TNF-α and hs-CRP levels; these differences persisted after multivariate adjustment. Participants in the highest quartile of HOMA-IR had increased IL-6, TNF-α and hs-CRP levels; these differences persisted for TNF-α and hs-CRP after multivariate adjustment. No association was found between IL-1β levels and all diabetes and insulin resistance markers studied. Finally, participants with IGT had higher hs-CRP levels than participants with a normal OGTT, but this difference disappeared after controlling for body mass index (BMI). CONCLUSION: subjects with diabetes, metabolic syndrome and increased insulin resistance present with increased levels of IL6, TNF-α and hs-CRP, while no association was found with IL-1β. The increased inflammatory state of subjects with IGT is partially explained by increased BMI. © 2012 Blackwell Publishing Ltd.
Resumo:
While the benefits of intensified insulin treatment in insulin-dependent (Type 1) diabetes mellitus (IDDM) are well recognized, the risks have not been comprehensively characterized. We examined the risk of severe hypoglycaemia, ketoacidosis, and death in a meta-analysis of randomized controlled trials. The MEDLINE database, reference lists, and specialist journals were searched electronically or by hand to identify relevant studies with at least 6 months of follow-up and the monitoring of glycaemia by glycosylated haemoglobin measurements. Logistic regression was used for calculation of combined odds ratios and 95% confidence intervals (95% CI). The influence of covariates was examined by including covariate-by-treatment interaction terms. Methodological study quality was assessed and sensitivity analyses were performed. Fourteen trials were identified. These contributed 16 comparisons with 1028 patients allocated to intensified and 1039 allocated to conventional treatment. A total of 846 patients suffered at least one episode of severe hypoglycaemia, 175 patients experienced ketoacidosis and 26 patients died. The combined odds ratio (95% CI) for hypoglycaemia was 2.99 (2.45-3.64), for ketoacidosis 1.74 (1.27-2.38) and for death from all causes 1.40 (0.65-3.01). The risk of severe hypoglycaemia was determined by the degree of normalization of glycaemia achieved (p=0.005 for interaction term), with the results from the Diabetes Control and Complications Trial (DCCT) in line with the other trials. Ketoacidosis risk depended on the type of intensified treatment used. Odds ratios (95% CI) were 7.20 (2.95-17.58) for exclusive use of pumps, 1.13 (0.15-8.35) for multiple daily injections and 1.28 (0.90-1.83) for trials offering a choice between the two (p = 0.004 for interaction). Mortality was significantly (p = 0.007) increased for causes potentially associated with acute complications (7 vs 0 deaths, 5 deaths attributed to ketoacidosis, and 2 sudden deaths), and non-significantly (p = 0.16) decreased for macrovascular causes (3 vs 8 deaths). We conclude that there is a substantial risk of severe adverse effects associated with intensified insulin treatment. Mortality from acute metabolic causes is increased; however, this is largely counterbalanced by a reduction in cardiovascular mortality. The excess of severe hypoglycemia in the DCCT is not exceptional. Multiple daily injection schemes may be safer than treatment with insulin pumps.