86 resultados para Insular cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Although individuals vulnerable to psychosis show brain volumetric abnormalities, structural alterations underlying different probabilities for later transition are unknown. The present study addresses this issue by means of voxel-based morphometry (VBM). Method We investigated grey matter volume (GMV) abnormalities by comparing four neuroleptic-free groups: individuals with first episode of psychosis (FEP) and with at-risk mental state (ARMS), with either long-term (ARMS-LT) or short-term ARMS (ARMS-ST), compared to the healthy control (HC) group. Using three-dimensional (3D) magnetic resonance imaging (MRI), we examined 16 FEP, 31 ARMS, clinically followed up for on average 3 months (ARMS-ST, n=18) and 4.5 years (ARMS-LT, n=13), and 19 HC. Results The ARMS-ST group showed less GMV in the right and left insula compared to the ARMS-LT (Cohen's d 1.67) and FEP groups (Cohen's d 1.81) respectively. These GMV differences were correlated positively with global functioning in the whole ARMS group. Insular alterations were associated with negative symptomatology in the whole ARMS group, and also with hallucinations in the ARMS-ST and ARMS-LT subgroups. We found a significant effect of previous antipsychotic medication use on GMV abnormalities in the FEP group. Conclusions GMV abnormalities in subjects at high clinical risk for psychosis are associated with negative and positive psychotic symptoms, and global functioning. Alterations in the right insula are associated with a higher risk for transition to psychosis, and thus may be related to different transition probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of orientations is at the core of our visual experience. Orientation selectivity in human visual cortex has been inferred from psychophysical experiments and more recently demonstrated with functional magnetic resonance imaging (fMRI). One method to identify orientation-selective responses is fMRI adaptation, in which two stimuli—either with the same or with different orientations—are presented successively. A region containing orientation-selective neurons should demonstrate an adapted response to the “same orientation” condition in contrast to the “different orientation” condition. So far, human primary visual cortex (V1) showed orientation-selective fMRI adaptation only in experimental designs using prolonged pre-adaptation periods (∼40 s) in combination with top-up stimuli that are thought to maintain the adapted level. This finding has led to the notion that orientation-selective short-term adaptation in V1 (but not V2 or V3) cannot be demonstrated using fMRI. The present study aimed at re-evaluating this question by testing three differently timed adaptation designs. With the use of a more sensitive analysis technique, we show robust orientation-selective fMRI adaptation in V1 evoked by a short-term adaptation design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to compare the effect duration of two different protocols of repetitive transcranial magnetic stimulation (rTMS) on saccade triggering. In four experiments, two regions (right frontal eye field (FEF) and vertex) were stimulated using a 1-Hz and a theta burst protocol (three 30Hz pulses repeated at intervals of 100ms). The same number of TMS pulses (600 pulses) was applied with stimulation strength of 80% of the resting motor threshold for hand muscles. Following stimulation the subjects repeatedly performed an oculomotor task using a modified overlap paradigm, and saccade latencies were measured over a period of 60min. The results show that both 1-Hz and theta burst stimulation had inhibitory effects on saccade triggering when applied over the FEF, but not over the vertex. One-hertz rTMS significantly increased saccade latencies over a period of about 8min. After theta burst rTMS, this effect lasted up to 30min. Furthermore, the decay of rTMS effects was protocol-specific: After 1-Hz stimulation, saccade latencies returned to a baseline level much faster than after theta burst stimulation. We speculate that these time course differences represent distinct physiological mechanisms of how TMS interacts with brain function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pneumococcal meningitis is associated with high mortality (approximately 30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown.We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i) a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI) and (ii) the self-organizing map (SOM), a clustering technique based on covariance in gene expression kinetics. RESULTS: Among 598 genes differentially regulated (change factor > or = 1.5; p < or = 0.05), 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. CONCLUSION: Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential targets for therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcranial magnetic stimulation has evolved into a powerful neuroscientific tool allowing to interfere transiently with specific brain functions. In addition, repetitive TMS (rTMS) has long-term effects (e.g. on mood), probably mediated by neurochemical alterations. While long-term safety of rTMS with regard to cognitive functioning is well established from trials exploring its therapeutic efficacy, little is known on whether rTMS can induce changes in cognitive functioning in a time window ranging from minutes to hours, a time in which neurochemical effects correlated with stimulation have been demonstrated. This study examined effects of rTMS on three measures of executive function in healthy subjects who received one single rTMS session (40 trains of 2 s duration 20 Hz stimuli) at the left dorsolateral prefrontal cortex (DLPFC). Compared to a sham condition one week apart, divided attention performance was significantly impaired about 30-60 min after rTMS, while Stroop-interference and performance in the Wisconsin Card Sorting Test was unaffected after rTMS. Repetitive TMS of the left DLPFC, at stimulation parameters used in therapeutic studies, does not lead to a clinically relevant impairment of executive function after stimulation. However, the significant effect on divided attention suggests that cognitive effects of rTMS are not limited to the of acute stimulation, and may possibly reflect known neurochemical alterations induced by rTMS. Sensitive cognitive measures may be useful to trace those short-term effects of rTMS non-invasively in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histological serial sections, three-dimensional reconstructions and morphometry served to study the postnatal development of V1 in tree shrews. The main objectives were to evaluate the expansion of V1, the implications of its growth on the occipital cortex and, vice versa, the effects of the expanding neocortex on the topography of V1. The future V1 was identified on postnatal day 1 by its granular layer IV, covering the superior surface of the occipital cortices including the poles. A subdivision of layer IV, distinctive for the binocular part, was evident in the central region. V1 expanded continuously with age into all directions succeeded by the maturation of layering. The monocular part was recognized from day 15 onward, after the binocular part had reached its medial border. In reference to the retinotopic map of V1, regions emerged in a coherent temporo-spatial sequence delineating the retinal topography in a central to peripheral gradient beginning with the visual streak representation. The growth of V1 was greatest until tree shrews open their eyes, culminated during adolescence, and completed after a subsequent decrease in the young adult. Simultaneous expansion of the neocortex induced a shifting of V1. Translation and elongation of V1 entailed that the occipital cortex covered the superior colliculi along with a downward rotation of the poles. The enlargement of the occipital part of the hemispheres was in addition associated with the formation of a small occipital horn in the lateral ventricles, indicating an incipient 'true' occipital lobe harbouring mainly cortices involved in visual functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edges are important cues defining coherent auditory objects. As a model of auditory edges, sound on- and offset are particularly suitable to study their neural underpinnings because they contrast a specific physical input against no physical input. Change from silence to sound, that is onset, has extensively been studied and elicits transient neural responses bilaterally in auditory cortex. However, neural activity associated with sound onset is not only related to edge detection but also to novel afferent inputs. Edges at the change from sound to silence, that is offset, are not confounded by novel physical input and thus allow to examine neural activity associated with sound edges per se. In the first experiment, we used silent acquisition functional magnetic resonance imaging and found that the offset of pulsed sound activates planum temporale, superior temporal sulcus and planum polare of the right hemisphere. In the planum temporale and the superior temporal sulcus, offset response amplitudes were related to the pulse repetition rate of the preceding stimulation. In the second experiment, we found that these offset-responsive regions were also activated by single sound pulses, onset of sound pulse sequences and single sound pulse omissions within sound pulse sequences. However, they were not active during sustained sound presentation. Thus, our data show that circumscribed areas in right temporal cortex are specifically involved in identifying auditory edges. This operation is crucial for translating acoustic signal time series into coherent auditory objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical dynamics can be imaged at high spatiotemporal resolution with voltage-sensitive dyes (VSDs) and calcium-sensitive dyes (CaSDs). We combined these two imaging techniques using epifluorescence optics together with whole cell recordings to measure the spatiotemporal dynamics of activity in the mouse somatosensory barrel cortex in vitro and in the supragranular layers in vivo. The two optical signals reported distinct aspects of cortical function. VSD fluorescence varied linearly with membrane potential and was dominated by subthreshold postsynaptic potentials, whereas the CaSD signal predominantly reflected local action potential firing. Combining VSDs and CaSDs allowed us to monitor the synaptic drive and the spiking activity of a given area at the same time in the same preparation. The spatial extent of the two dye signals was different, with VSD signals spreading further than CaSD signals, reflecting broad subthreshold and narrow suprathreshold receptive fields. Importantly, the signals from the dyes were differentially affected by pharmacological manipulations, stimulation strength, and depth of isoflurane anesthesia. Combined VSD and CaSD measurements can therefore be used to specify the temporal and spatial relationships between subthreshold and suprathreshold activity of the neocortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that peripheral trauma such as soft tissue injuries can trigger dystonia, although little is known about the underlying mechanism. Because peripheral injury only rarely appears to elicit dystonia, a predisposing vulnerability in cortical motor areas might play a role. Using single and paired-pulse pulse transcranial magnetic stimulation, we evaluated motor cortex excitability of a hand muscle in a patient with peripherally induced foot dystonia, in her brother with craniocervical dystonia, and in her unaffected sister, and compared their results to those from a group of normal subjects. In the patient with peripherally induced dystonia, we found a paradoxical intracortical facilitation at short interstimulus intervals of 3 and 5 milliseconds, at which regular intracortical inhibition (ICI) occurred in healthy subjects. These findings suggest that the foot dystonia may have been precipitated as the result of a preexisting abnormality of motor cortex excitability. Furthermore, the abnormality of ICI in her brother and sister indicates that altered motor excitability may be a hereditary predisposition. The study demonstrates that the paired-pulse technique is a useful tool to assess individual vulnerability, which can be particularly relevant when the causal association between trauma and dystonia is less evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.