37 resultados para Indian Hedgehog
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.