37 resultados para In vivo imaging
Resumo:
Purpose The radiolanthanide 161Tb (T 1/2 = 6.90 days, Eβ− av = 154 keV) was recently proposed as a potential alternative to 177Lu (T 1/2 = 6.71 days, Eβ− av = 134 keV) due to similar physical decay characteristics but additional conversion and Auger electrons that may enhance the therapeutic efficacy. The goal of this study was to compare 161Tb and 177Lu in vitro and in vivo using a tumour-targeted DOTA-folate conjugate (cm09). Methods 161Tb-cm09 and 177Lu-cm09 were tested in vitro on folate receptor (FR)-positive KB and IGROV-1 cancer cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay. In vivo 161Tb-cm09 and 177Lu-cm09 (10 MBq, 0.5 nmol) were investigated in two different tumour mouse models with regard to the biodistribution, the possibility for single photon emission computed tomography (SPECT) imaging and the antitumour efficacy. Potentially undesired side effects were monitored over 6 months by determination of plasma parameters and examination of kidney function with quantitative SPECT using 99mTc-dimercaptosuccinic acid (DMSA). Results To obtain half-maximal inhibition of tumour cell viability a 4.5-fold (KB) and 1.7-fold (IGROV-1) lower radioactivity concentration was required for 161Tb-cm09 (IC50 ~0.014 MBq/ml and ~2.53 MBq/ml) compared to 177Lu-cm09 (IC50 ~0.063 MBq/ml and ~4.52 MBq/ml). SPECT imaging visualized tumours of mice with both radioconjugates. However, in therapy studies 161Tb-cm09 reduced tumour growth more efficiently than 177Lu-cm09. These findings were in line with the higher absorbed tumour dose for 161Tb-cm09 (3.3 Gy/MBq) compared to 177Lu-cm09 (2.4 Gy/MBq). None of the monitored parameters indicated signs of impaired kidney function over the whole time period of investigation after injection of the radiofolates. Conclusion Compared to 177Lu-cm09 we demonstrated equal imaging features for 161Tb-cm09 but an increased therapeutic efficacy for 161Tb-cm09 in both tumour cell lines in vitro and in vivo. Further preclinical studies using other tumour-targeting radioconjugates are clearly necessary to draw final conclusions about the future clinical perspectives of 161Tb.
Resumo:
Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and <3% ID/g, respectively, with values of <0.5% ID/g during receptor blockade). In conclusion, the somatostatin mimic [111In-DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.
Resumo:
Splenomegaly, albeit variably, is a hallmark of malaria; yet, the role of the spleen in Plasmodium infections remains vastly unknown. The implementation of imaging to study the spleen is rapidly advancing our knowledge of this so-called "blackbox" of the abdominal cavity. Not only has ex vivo imaging revealed the complex functional compartmentalization of the organ and immune effector cells, but it has also allowed the observation of major structural remodeling during infections. In vivo imaging, on the other hand, has allowed quantitative measurements of the dynamic passage of the parasite at spatial and temporal resolution. Here, we review imaging techniques used for studying the malarious spleen, from optical microscopy to in vivo imaging, and discuss the bright perspectives of evolving technologies in our present understanding of the role of this organ in infections caused by Plasmodium.
Resumo:
PURPOSE Assessment of the cerebral blood flow (CBF) is crucial in the evaluation of patients with steno-occlusive diseases of the arteries supplying the brain for prediction of stroke risk. Quantitative phase contrast magnetic resonance angiography (PC-MRA) can be utilised for noninvasive quantification of CBF. The aim of this study was to validate in-vivo PC-MRA data by comparing them with colour-coded duplex (CCD) sonography in patients with cerebrovascular disease. METHODS AND MATERIALS We examined 24 consecutive patients (mean age 63 years) with stenosis of arteries supplying the brain using PC-MRA and CCD. Velocities were measured in a total of 209 stenotic and healthy arterial segments (110 extra- and 99 intracranial). RESULTS Moderate to good correlation of velocity measurements between both techniques was observed in all six extracranial and five out of seven intracranial segments (p <0.05). Velocities measured with CCD sonography were generally higher than those obtained by PC-MRA. Reversal of flow direction was detected consistently with both methods. CONCLUSION PC-MRA represents a robust, standardised magnetic resonance imaging technique for blood flow measurements within a reasonable acquisition time, potentially evolving as valuable work-up tool for more precise patient stratification for revascularisation therapy. PC-MRA overcomes relevant weaknesses of CCD in being not operator-dependent and not relying on a bone window to assess the intracranial arteries.
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.
Resumo:
INTRODUCTION Clinical treatment of spinal metastasis is gaining in complexity while the underlying biology remains unknown. Insufficient biological understanding is due to a lack of suitable experimental animal models. Intercellular adhesion molecule-1 (ICAM1) has been implicated in metastasis formation. Its role in spinal metastasis remains unclear. It was the aim to generate a reliable spinal metastasis model in mice and to investigate metastasis formation under ICAM1 depletion. MATERIAL AND METHODS B16 melanoma cells were infected with a lentivirus containing firefly luciferase (B16-luc). Stable cell clones (B16-luc) were injected retrogradely into the distal aortic arch. Spinal metastasis formation was monitored using in vivo bioluminescence imaging/MRI. Neurological deficits were monitored daily. In vivo selected, metastasized tumor cells were isolated (mB16-luc) and reinjected intraarterially. mB16-luc cells were injected intraarterially in ICAM1 KO mice. Metastasis distribution was analyzed using organ-specific fluorescence analysis. RESULTS Intraarterial injection of B16-luc and metastatic mB16-luc reliably induced spinal metastasis formation with neurological deficits (B16-luc:26.5, mB16-luc:21 days, p<0.05). In vivo selection increased the metastatic aggressiveness and led to a bone specific homing phenotype. Thus, mB16-luc cells demonstrated higher number (B16-luc: 1.2±0.447, mB16-luc:3.2±1.643) and increased total metastasis volume (B16-luc:2.87±2.453 mm3, mB16-luc:11.19±3.898 mm3, p<0.05) in the spine. ICAM1 depletion leads to a significantly reduced number of spinal metastasis (mB16-luc:1.2±0.84) with improved neurological outcome (29 days). General metastatic burden was significantly reduced under ICAM1 depletion (control: 3.47×10(7)±1.66×10(7); ICAM-1-/-: 5.20×10(4)±4.44×10(4), p<0.05 vs. control) CONCLUSION Applying a reliable animal model for spinal metastasis, ICAM1 depletion reduces spinal metastasis formation due to an organ-unspecific reduction of metastasis development.
Resumo:
Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.