85 resultados para Implantable Infusion pumps
Resumo:
Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 microg/ml S-ketamine over 120 min under isoflurane anesthesia was performed in Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses).
Resumo:
OBJECTIVE: To generate anatomical data on the human middle ear and adjacent structures to serve as a base for the development and optimization of new implantable hearing aid transducers. Implantable middle ear hearing aid transducers, i.e. the equivalent to the loudspeaker in conventional hearing aids, should ideally fit into the majority of adult middle ears and should utilize the limited space optimally to achieve sufficiently high maximal output levels. For several designs, more anatomical data are needed. METHODS: Twenty temporal bones of 10 formalin-fixed adult human heads were scanned by a computed tomography system (CT) using a slide thickness of 0.63 mm. Twelve landmarks were defined and 24 different distances were calculated for each temporal bone. RESULTS: A statistical description of 24 distances in the adult human middle ear which may limit or influence the design of middle ear transducers is presented. Significant inter-individual differences but no significant differences for gender, side, age or degree of pneumatization of the mastoid were found. Distances, which were not analyzed for the first time in this study, were found to be in good agreement with the results of earlier studies. CONCLUSION: A data set describing the adult human middle ear anatomy quantitatively from the point of view of designers of new implantable hearing aid transducers has been generated. In principle, the method employed in this study using standard CT scans could also be used preoperatively to rule out exclusion criteria.
Resumo:
Background: Looking for a candidate substance inducing hepatobiliary dysfunction under parenteral nutrition (PN) in newborns, we recently discovered that newborn infusions extract large amounts of the plasticizer diethylhexylphthalate (DEHP) from commonly used polyvinylchloride (PVC) infusion lines. This plasticizer is well known to be genotoxic and teratogenic in animals and to cause changes in various organs and enzyme systems even in humans. The aim of this study was to examine the effect of DEHP, extracted in the same way and in the same amount as in newborns, on livers of young rabbits. Methods: Prepubertal rabbits received lipid emulsion through central IV lines continuously for 3 weeks either via PVC or polyethylene (PE) infusion systems. Livers were examined after 1 and 3 weeks by light and electron microscopy. Results: By light microscopy, hydropic degeneration, single-cell necrosis, fibrosis, and bile duct proliferation were observed more in the PVC group. Electron microscopy revealed multiple nuclear changes, clusters and atypical forms of peroxisomes, proliferation of smooth endoplasmic reticulum, increased deposition of lipofuscin, and a mild perisinusoidal fibrosis only in the PVC group. These changes, which are generally regarded as reaction upon a toxic stimulus, could be exclusively attributed to DEHP. Conclusions: This investigation proved that DEHP produces toxin-like changes in livers of young rabbits in the same dose, duration, and method of administration as in newborn infants. For this reason, it is likely that DEHP is the substance that causes hepatobiliary dysfunction in newborns under PN. Possible modes of action of DEHP are proposed.
Resumo:
QUESTIONS UNDER STUDY: In patients with an implantable defibrillator (ICD), inappropriate ICD interventions alter the quality of life, may cause hospitalisations and limit cost-effectiveness. The aim of the study was to determine the incidence and causes of inappropriate ICD interventions, and to identify patients at risk. METHODS: For this observational longitudinal study, consecutive patients undergoing ICD implantation at the University Hospital of Berne were included in a registry. All stored electrograms of episodes triggering ICD interventions were systematically reviewed and analysed to determine whether ICD interventions were appropriate or inappropriate. Inappropriate ICD interventions were classified according to their cause, and risk factors were sought. RESULTS: 214 consecutive patients were followed during a median time of 2.7 years (3.7 years IQR, 698 patient years). 81 inappropriate ICD interventions occurred in 58 patients (27%). Factors triggering inappropriate ICD interventions included atrial fibrillation and flutter (n = 35, 44%), sinus tachycardia (n = 26, 32%), lead fracture (n = 12), recurrent self-terminating ventricular tachycardia (n = 5), double-counting due to T-wave oversensing (n = 3). The only identifiable risk factor for inappropriate ICD interventions was sustained ventricular tachycardia as index arrhythmia. CONCLUSIONS: An important proportion of ICD patients suffer inappropriate ICD interventions that are most commonly due to supraventricular arrhythmias. Patients with ventricular tachycardia prior to ICD implantation are at higher risk of inappropriate ICD interventions. Interventions aiming at decreasing the risk of inappropriate ICD interventions should be considered in these patients.
Resumo:
To compare the diabetes-specific quality of life in subjects with type 1 diabetes treating their diabetes with multiple daily injections (MDI) to that of subjects on continuous subcutaneous insulin infusion (CSII).
Resumo:
A new implantable hearing system, the direct acoustic cochlear stimulator (DACS) is presented. This system is based on the principle of a power-driven stapes prosthesis and intended for the treatment of severe mixed hearing loss due to advanced otosclerosis. It consists of an implantable electromagnetic transducer, which transfers acoustic energy directly to the inner ear, and an audio processor worn externally behind the implanted ear. The device is implanted using a specially developed retromeatal microsurgical approach. After removal of the stapes, a conventional stapes prosthesis is attached to the transducer and placed in the oval window to allow direct acoustical coupling to the perilymph of the inner ear. In order to restore the natural sound transmission of the ossicular chain, a second stapes prosthesis is placed in parallel to the first one into the oval window and attached to the patient's own incus, as in a conventional stapedectomy. Four patients were implanted with an investigational DACS device. The hearing threshold of the implanted ears before implantation ranged from 78 to 101 dB (air conduction, pure tone average, 0.5-4 kHz) with air-bone gaps of 33-44 dB in the same frequency range. Postoperatively, substantial improvements in sound field thresholds, speech intelligibility as well as in the subjective assessment of everyday situations were found in all patients. Two years after the implantations, monosyllabic word recognition scores in quiet at 75 dB improved by 45-100 percent points when using the DACS. Furthermore, hearing thresholds were already improved by the second stapes prosthesis alone by 14-28 dB (pure tone average 0.5-4 kHz, DACS switched off). No device-related serious medical complications occurred and all patients have continued to use their device on a daily basis for over 2 years. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
OBJECTIVES: To assess perioperative outcomes and blood pressure (BP) responses to an implantable carotid sinus baroreflex activating system being investigated for the treatment of resistant hypertension. METHODS: We report on the first seventeen patients enrolled in a multicenter study. Bilateral perivascular carotid sinus electrodes (CSL) and a pulse generator (IPG) are permanently implanted. Optimal placement of the CSL is determined by intraoperative BP responses to test activations. Acute BP responses were tested postoperatively and during the first four months of follow-up. RESULTS: Prior to implant, BP was 189.6+/-27.5/110.7+/-15.3 mmHg despite stable therapy (5.2+/-1.8 antihypertensive drugs). The mean procedure time was 202+/-43 minutes. No perioperative strokes or deaths occurred. System tests performed 1 or up to 3 days postoperatively resulted in significant (all p < or = 0.0001) mean maximum reduction, with standard deviations and 95% confidence limits for systolic BP, diastolic BP and heart rate of 28+/-22 (17, 39) mmHg, 16+/-11 (10, 22) mmHg and 8+/-4 (6, 11) BPM, respectively. Repeated testing during 3 months of therapeutic electrical activation demonstrated a durable response. CONCLUSIONS: These preliminary data suggest an acceptable safety of the procedure with a low rate of adverse events and support further clinical development of baroreflex activation as a new concept to treat resistant hypertension.
Resumo:
The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety
Resumo:
The purpose of this single-center study was to report our initial experience with an implantable remote pressure sensor for aneurysm sac pressure measurement in patients post-endovascular aneurysm repair (EVAR) including short-term follow-up. A pressure sensor (EndoSure, Atlanta, GA) was implanted in 12 patients treated with different commercially available aortic endografts for EVAR. Pressure was read pre- and post-EVAR in the operating room. One-month follow-up (30 days +/- 6 days) was performed including sac pressure readings and IV contrast CT scans. Variables were compared using the paired Student's t test. An intraprocedure type-I endoleak and a type-III endoleak were successfully treated resulting in decreasing sac pressures. In all patients, post-EVAR systolic sac pressure decreased by an average of 33% (P = 0.005) compared to pre-EVAR measurements. One-month follow-up demonstrated a 47% decrease in systolic sac pressure (P = 0.05). On follow-up CT scans, the average maximum aneurysm diameter pre-EVAR was 6.3 +/- 1.6 cm and post-EVAR 6.0 +/- 1.7 cm (P=0.05). The diameter of the aneurysm sac was larger only in one patient with a type-III endoleak. Remote sac pressure measurement may provide important information in addition to imaging and may help to reduce the number of follow-up CT scans.
Resumo:
BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.