64 resultados para INHALED FRUSEMIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2) and carboxyl (−COOH) surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies. Keywords: Multi-walled carbon nanotubes (MWCNTs); Pulmonary surfactant (Curosurf); Macrophages; Epithelial cells; Dendritic cells; Triple cell co-culture; Pro-inflammatory and oxidative reactions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate effects of isoflurane at approximately the minimum alveolar concentration (MAC) on the nociceptive withdrawal reflex (NWR) of the forelimb of ponies as a method for quantifying anesthetic potency. ANIMALS: 7 healthy adult Shetland ponies. PROCEDURE: Individual MAC (iMAC) for isoflurane was determined for each pony. Then, effects of isoflurane administered at 0.85, 0.95, and 1.05 iMAC on the NWR were assessed. At each concentration, the NWR threshold was defined electromyographically for the common digital extensor and deltoid muscles by stimulating the digital nerve; additional electrical stimulations (3, 5, 10, 20, 30, and 40 mA) were delivered, and the evoked activity was recorded and analyzed. After the end of anesthesia, the NWR threshold was assessed in standing ponies. RESULTS: Mean +/- SD MAC of isoflurane was 1.0 +/- 0.2%. The NWR thresholds for both muscles increased significantly in a concentration-dependent manner during anesthesia, whereas they decreased in awake ponies. Significantly higher thresholds were found for the deltoid muscle, compared with thresholds for the common digital extensor muscle, in anesthetized ponies. At each iMAC tested, amplitudes of the reflex responses from both muscles increased as stimulus intensities increased from 3 to 40 mA. A concentration-dependent depression of evoked reflexes with reduction in slopes of the stimulus-response functions was detected. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthetic-induced changes in sensory-motor processing in ponies anesthetized with isoflurane at concentrations of approximately 1.0 MAC can be detected by assessment of NWR. This method will permit comparison of effects of inhaled anesthetics or anesthetic combinations on spinal processing in equids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study aimed to assess prevalence and distribution of use of asthma medication for wheeze in pre-school children in the community. We sent a postal questionnaire to the parents of a random population-based sample of 4,277 UK children aged 1-5 years; 3,410 participated (children of south Asian decent were deliberately over-represented). During the previous 12 months, 18% of the children were reported to have received bronchodilators, 8% inhaled corticosteroids (ICS) and 3% oral corticosteroids. Among current wheezers these proportions were 55%, 25%, and 12%, respectively. Use of ICS increased with reported severity of wheeze, but did not reach 60% even in the most severe category. In contrast, 42% of children receiving ICS reported no or very infrequent recent wheeze. Among children with the episodic viral wheeze phenotype, 17% received ICS compared with 40% among multiple-trigger wheezers. Use of ICS by current wheezers was less common in children of South Asian ethnicity and in girls. Although a high proportion of pre-school children in the community used asthma inhalers, treatment seemed to be insufficiently adjusted to severity or phenotype of wheeze, with relative under-treatment of severe wheeze with ICS, especially in girls and South Asian children, but apparent over-treatment of mild and episodic viral wheeze and chronic cough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The airways of cystic fibrosis (CF) patients are characterised by neutrophils that release high amounts of elastase overwhelming the local antiprotease shield. Inhalation of alpha(1)-antitrypsin (AAT) may restore the protease-antiprotease balance and attenuate airway inflammation in CF airways. The aims of the present study were: 1) to assess the best deposition region for inhaled AAT by two different inhalation strategies; and 2) to examine the effect of 4 weeks of AAT inhalation on lung function, protease-antiprotease balance and airway inflammation in CF patients. In a prospective, randomised study, 52 CF patients received a daily deposition by inhalation of 25 mg AAT for 4 weeks targeting their peripheral or bronchial compartment. The levels of elastase activity, AAT, pro-inflammatory cytokines, neutrophils, immunoglobulin G fragments and the numbers of Pseudomonas aeruginosa were assessed in induced sputum before and after the inhalation period. Inhalation of AAT increased AAT levels and decreased the levels of elastase activity, neutrophils, pro-inflammatory cytokines and the numbers of P. aeruginosa. However, it had no effect on lung function. No difference was found between the peripheral and bronchial inhalation mode. In conclusion, although no effect on lung function was observed, the clear reduction of airway inflammation after alpha(1)-antitrypsin treatment may precede pulmonary structural changes. The alpha(1)-antitrypsin deposition region may play a minor role for alpha(1)-antitrypsin inhalation in cystic fibrosis patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Epidemiological data for south Asian children in the United Kingdom are contradictory, showing a lower prevalence of wheeze, but a higher rate of medical consultations and admissions for asthma compared with white children. These studies have not distinguished different asthma phenotypes or controlled for varying environmental exposures. OBJECTIVE: To compare the prevalence of wheeze and related health-service use in south Asian and white pre-schoolchildren in the United Kingdom, taking into account wheeze phenotype (viral and multiple wheeze) and environmental exposures. METHODS: A postal questionnaire was completed by parents of a population-based sample of 4366 white and 1714 south Asian children aged 1-4 years in Leicestershire, UK. Children were classified as having viral wheeze or multiple trigger wheeze. RESULTS: The prevalence of current wheeze was 35.6% in white and 25.5% in south Asian 1-year-olds (P<0.001), and 21.9% and 20.9%, respectively, in children aged 2-4 years. Odds ratios (ORs) (95% confidence interval) for multiple wheeze and for viral wheeze, comparing south Asian with white children, were 2.21 (1.19-4.09) and 1.43 (0.77-2.65) in 2-4-year-olds after controlling for socio-economic conditions, environmental exposures and family history. In 1-year-olds, the respective ORs for multiple and viral wheeze were 0.66 (0.47-0.92) and 0.81 (0.64-1.03). Reported GP consultation rates for wheeze and hospital admissions were greater in south Asian children aged 2-4 years, even after adjustment for severity, but the use of inhaled corticosteroids was lower. CONCLUSIONS: South Asian 2-4-year-olds are more likely than white children to have multiple wheeze (a condition with many features of chronic atopic asthma), after taking into account ethnic differences in exposure to some environmental agents. Undertreatment with inhaled corticosteroids might partly explain their greater use of health services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The forced oscillation technique (FOT) requires minimal patient cooperation and is feasible in preschool children. Few data exist on respiratory function changes measured using FOT following inhaled bronchodilators (BD) in healthy young children, limiting the clinical applications of BD testing in this age group. A study was undertaken to determine the most appropriate method of quantifying BD responses using FOT in healthy young children and those with common respiratory conditions including cystic fibrosis, neonatal chronic lung disease and asthma and/or current wheeze. METHODS: A pseudorandom FOT signal (4-48 Hz) was used to examine respiratory resistance and reactance at 6, 8 and 10 Hz; 3-5 acceptable measurements were made before and 15 min after the administration of salbutamol. The post-BD response was expressed in absolute and relative (percentage of baseline) terms. RESULTS: Significant BD responses were seen in all groups. Absolute changes in BD responses were related to baseline lung function within each group. Relative changes in BD responses were less dependent on baseline lung function and were independent of height in healthy children. Those with neonatal chronic lung disease showed a strong baseline dependence in their responses. The BD response in children with cystic fibrosis, asthma or wheeze (based on both group mean data and number of responders) was not greater than in healthy children. CONCLUSIONS: The BD response assessed by the FOT in preschool children should be expressed as a relative change to account for the effect of baseline lung function. The limits for a positive BD response of -40% and 65% for respiratory resistance and reactance, respectively, are recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons: 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the adverse health effects associated with inhalation of combustion-derived and synthetic NSP. 2) The toxicological potential of NSP contrasts with the potential application of synthetic NSP in technological as well as medicinal settings with the latter including the use of NSP as diagnostics or therapeutics. In order to shed light on this paradox, this article aims to highlight recent findings about the interaction of inhaled NSP with the structures of the respiratory tract including surfactant and alveolar macrophages and epithelial cells. Cellular responses to NSP exposure include the generation of reactive oxygen species and the induction of an inflammatory response. Furthermore, this review places special emphasis on methodological differences between experimental studies and the caveats associated with the dose metrics and points out ways to overcome inherent methodological problems. Key words: electron tomography, surfactant, translocation, oxidative stress, inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is poor agreement on definitions of different phenotypes of preschool wheezing disorders. The present Task Force proposes to use the terms episodic (viral) wheeze to describe children who wheeze intermittently and are well between episodes, and multiple-trigger wheeze for children who wheeze both during and outside discrete episodes. Investigations are only needed when in doubt about the diagnosis. Based on the limited evidence available, inhaled short-acting beta(2)-agonists by metered-dose inhaler/spacer combination are recommended for symptomatic relief. Educating parents regarding causative factors and treatment is useful. Exposure to tobacco smoke should be avoided; allergen avoidance may be considered when sensitisation has been established. Maintenance treatment with inhaled corticosteroids is recommended for multiple-trigger wheeze; benefits are often small. Montelukast is recommended for the treatment of episodic (viral) wheeze and can be started when symptoms of a viral cold develop. Given the large overlap in phenotypes, and the fact that patients can move from one phenotype to another, inhaled corticosteroids and montelukast may be considered on a trial basis in almost any preschool child with recurrent wheeze, but should be discontinued if there is no clear clinical benefit. Large well-designed randomised controlled trials with clear descriptions of patients are needed to improve the present recommendations on the treatment of these common syndromes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic nano-sized particles (NSP), ie, particles with a diameter of less than 100 nm, are generated with or without purpose as chemically and physically well-defined materials or as a consequence of combustion processes respectively. Inhalation of NSP occurs on a regular basis due to air pollution and is associated with an increase in respiratory and cardiovascular morbidity and mortality. Manufactured NSP may intentionally be inhaled as pharmaceuticals or unintentionally during production at the workplace. Hence the interactions of NSP with the respiratory tract are currently under intensive investigation. Due to special physicochemical features of NSP, its biological behaviour may differ from that of larger sized particles. Here we review two important themes of current research into the effects of NSP on the lungs: 1) The potential of NSP to cross the blood-air barrier of the lungs, thus gaining access to the circulation and extrapulmonary organs. It is currently accepted that a small fraction of inhaled NSP may translocate to the circulation. The significance of this translocation requires further research. 2) The entering mechanisms of NSP into different cell types. There is evidence that NSP are taken up by cells via well-known pathways of endocytosis but also via different mechanisms not well understood so far. Knowledge of the quantitative relationship between the different entering mechanisms and cellular responses is not yet available but is urgently needed in order to understand the effects of intentionally or unintentionally inhaled NSP on the respiratory tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Acute bronchiolitis is the most common lower respiratory tract infection in infants and there is no evidence that drug treatment alters its natural course. Despite this, most Swiss paediatricians reported in 2001 prescribing bronchodilators and inhaled corticosteroids (ICS). This situation led to the creation of national guidelines followed by a tailored implementation programme. The aim of this study was to examine if treatment practices changed after the implementation of the new guidelines. METHODS: A questionnaire on treatment of bronchiolitis was sent to all Swiss paediatricians before (2001) and after (2006) creation and implementation of national guidelines (2003-2005). Guidelines were created in collaboration with all paediatric pulmonologists and implemented carefully using a multifaceted approach. RESULTS: Questionnaires were returned by 541 paediatricians (58%) in 2001 and by 639 (54%) in 2006. While both surveys showed a wide variation in the treatment of bronchiolitis between physicians, reported drug prescription decreased significantly between the two surveys. For outpatients, general use (for all patients) of bronchodilators dropped from 60% to 23%, and general use of ICS from 34% to 6%. For inpatients, general use of bronchodilators and ICS dropped from 55% to 18% and from 26% to 6%, respectively (all p<0.001). The decrease was evident in all regions, among hospital and primary care physicians, and among general paediatricians and paediatric pulmonologists. CONCLUSIONS: National guidelines together with a tailored implementation programme can have a major impact on medical management practices in a country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare recessive hereditary disorder characterized by dysmotility to immotility of ciliated and flagellated structures. Its main symptoms are respiratory, caused by defective ciliary beating in the epithelium of the upper airways (nose, bronchi and paranasal sinuses). Impairing the drainage of inhaled microorganisms and particles leads to recurrent infections and pulmonary complications. To date, 5 genes encoding 3 dynein protein arm subunits (DNAI1, DNAH5 and DNAH11), the kinase TXNDC3 and the X-linked RPGR have been found to be mutated in PCD. OBJECTIVES: We proposed to determine the impact of the DNAI1 gene on a cohort of unrelated PCD patients (n = 104) recruited without any phenotypic preselection. METHODS: We used denaturing high-performance liquid chromatography and sequencing to screen for mutations in the coding and splicing site sequences of the gene DNAI1. RESULTS: Three mutations were identified: a novel missense variant (p.Glu174Lys) was found in 1 patient and 2 previously reported variants were identified (p.Trp568Ser in 1 patient and IVS1+2_3insT in 3 patients). Overall, mutations on both alleles of gene DNAI1 were identified in only 2% of our clinically heterogeneous cohort of patients. CONCLUSION: We conclude that DNAI1 gene mutation is not a common cause of PCD, and that major or several additional disease gene(s) still remain to be identified before a sensitive molecular diagnostic test can be developed for PCD.