102 resultados para Hypoxia tolerance.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia is an important modulator of the skeletal muscle's oxidative phenotype. However, little is known regarding the molecular circuitry underlying the muscular hypoxia response and the interaction of hypoxia with other stimuli of muscle oxidative capacity. We hypothesized that exposure of mice to severe hypoxia would promote the expression of genes involved in capillary morphogenesis and glucose over fatty acid metabolism in active or disused soleus muscle of mice. Specifically, we tested whether the hypoxic response depends on oxygen sensing via the alpha-subunit of hypoxia-inducible factor-1 (HIF-1 alpha). Spontaneously active wildtype and HIF-1 alpha heterozygous deficient adult female C57B1/6 mice were subjected to hypoxia (PiO2 70 mmHg). In addition, animals were subjected to hypoxia after 7 days of muscle disuse provoked by hindlimb suspension. Soleus muscles were rapidly isolated and analyzed for transcript level alterations with custom-designed AtlasTM cDNA expression arrays (BD Biosciences) and cluster analysis of differentially expressed mRNAs. Multiple mRNA elevations of factors involved in dissolution and stabilization of blood vessels, glycolysis, and mitochondrial respiration were evident after 24 hours of hypoxia in soleus muscle. In parallel transcripts of fat metabolism were reduced. A comparable hypoxia-induced expression pattern involving complex alterations of the IGF-I axis was observed in reloaded muscle after disuse. This hypoxia response in spontaneously active animals was blunted in the HIF-1 alpha heterozygous deficient mice demonstrating 35% lower HIF-1 alpha mRNA levels. Our molecular observations support the concept that severe hypoxia provides HIF-1-dependent signals for remodeling of existing blood vessels, a shift towards glycolytic metabolism and altered myogenic regulation in oxidative mouse muscle and which is amplified by enhanced muscle use. These findings further imply differential mitochondrial turnover and a negative role of HIF-1 alpha for control of fatty acid oxidation in skeletal muscle exposed to one day of severe hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (VO2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of VO2max (DeltaVO2max) and of maximal power output (DeltaPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. DeltaVO2max was not significantly different between leg (-9.1+/-4.9%) and upper-body exercise (-7.9+/-5.8%). By contrast, Pmax was significantly more reduced during leg exercise (-17.3+/-3.3%) than during upper-body exercise (-9.6+/-6.4%, p<0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for DeltaVO2max nor for DeltaPmax. Furthermore, no relationship was observed between individual DeltaVO2max and DeltaPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and DeltaPmax (R=-0.80, p=0.03), as well as between volume density of mitochondria and DeltaPmax (R=-0.75, p=0.05). In conclusion, it seems that VO2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To assess the safety and cardiopulmonary adaptation to high altitude exposure among patients with coronary artery disease. METHODS: 22 patients (20 men and 2 women), mean age 57 (SD 7) years, underwent a maximal, symptom limited exercise stress test in Bern, Switzerland (540 m) and after a rapid ascent to the Jungfraujoch (3454 m). The study population comprised 15 patients after ST elevation myocardial infarction and 7 after a non-ST elevation myocardial infarction 12 (SD 4) months after the acute event. All patients were revascularised either by percutaneous coronary angioplasty (n = 15) or by coronary artery bypass surgery (n = 7). Ejection fraction was 60 (SD 8)%. beta blocking agents were withheld for five days before exercise testing. RESULTS: At 3454 m, peak oxygen uptake decreased by 19% (p < 0.001), maximum work capacity by 15% (p < 0.001) and exercise time by 16% (p < 0.001); heart rate, ventilation and lactate were significantly higher at every level of exercise, except at maximum exertion. No ECG signs of myocardial ischaemia or significant arrhythmias were noted. CONCLUSIONS: Although oxygen demand and lactate concentrations are higher during exercise at high altitude, a rapid ascent and submaximal exercise can be considered safe at an altitude of 3454 m for low risk patients six months after revascularisation for an acute coronary event and a normal exercise stress test at low altitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-myc downstream-regulated gene-1 (NDRG1) is a recently described hypoxia-inducible protein that is upregulated in various human cancers. Pancreatic ductal adenocarcinoma, called pancreatic cancer, is a highly aggressive cancer that is characterised by its avascular structure, which results in a severe hypoxic environment. In this study, we investigated whether NDRG1 is upregulated in these tumours, thus providing a novel marker for malignant cells in the pancreas. By immunohistochemistry, we observed that NDRG1 was highly expressed in well-differentiated cells of pancreatic cancer, whereas the poorly differentiated tumour cells were negative. In addition, hyperplastic islets and ducts of nonquiescent pancreatic tissue were positive. To further explore its selective expression in tumours, two well-established pancreatic cancer cell lines of unequal differentiation status were exposed to 2% oxygen. NDRG1 mRNA and protein were upregulated by hypoxia in the moderately differentiated Capan-1 cells; however, its levels remained unchanged in the poorly differentiated Panc-1 cell line. Taken together, our data suggest that NDRG1 will not serve as a reliable marker of tumour cells in the pancreas, but may serve as a marker of differentiation. Furthermore, we present the novel finding that cellular differentiation may be an important factor that determines the hypoxia-induced regulation of NDRG1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: We investigated the molecular response of a non-ischemic hypoxic stress in the liver, in particular, to distinguish its hepatoprotective potential. METHODS: The livers of mice were subjected to non-ischemic hypoxia by clamping the hepatic-artery (HA) for 2h while maintaining portal circulation. Hypoxia was defined by a decrease in oxygen saturation, the activation of hypoxia-inducible factor (HIF)-1 and the mRNA up-regulation of responsive genes. To demonstrate that the molecular response to hypoxia may in part be hepatoprotective, pre-conditioned animals were injected with an antibody against Fas (Jo2) to induce acute liver failure. Hepatocyte apoptosis was monitored by caspase-3 activity, cleavage of lamin A and animal survival. RESULTS: Clamping the HA induced a hypoxic stress in the liver in the absence of severe metabolic distress or tissue damage. The hypoxic stimulus was sufficient to activate the HIF-1 signalling pathway and up-regulate hepatoprotective genes. Pre-conditioning the liver with hypoxia was able to delay the onset of Fas-mediated apoptosis and prolong animal survival. CONCLUSIONS: Our data reveal that hepatic cells can sense and respond to a decrease in tissue oxygenation, and furthermore, that activation of hypoxia-inducible signalling pathways function in part to promote liver cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NDRG1 is a hypoxia-inducible protein, whose modulated expression is associated with the progression of human cancers. Here, we reveal that NDRG1 is markedly upregulated in the cytoplasm and on the membrane in human hepatocellular carcinoma (HCC). We demonstrate further that hypoxic stress increases the cytoplasmic expression of NDRG1 in vitro, but does not result in its localization on the plasma membrane. However, grown within an HCC-xenograft in vivo, cells express NDRG1 in the cytoplasm and on the plasma membrane. In conclusion, hypoxia is a potent inducer of NDRG1 in HCCs, albeit requiring additional stimuli within the tumour microenvironment for its recruitment to the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However, glutathione peroxidase 1 (GPx1) over-expression is protective to the neonatal mouse brain with HI injury. To further test the hypothesis that an adequate supply of GPx is critical to protection from HI injury, we crossed SOD1 over-expressing mice (hSOD-tg) with GPx1 over-expressing mice (hGPx-tg). Resulting litters contained wild-type (wt), hGPx-tg, hSOD-tg and hybrid hGPx-tg/hSOD-tg pups, which were subjected to HI at P7. Confirming previous results, the hGPx-tg mice had reduced injury compared to both Wt and hSOD-tg littermates. Neonatal mice over-expressing both GPx1 and SOD1 also had less injury compared to wt or hSOD-tg alone. A result of oxidative stress after neonatal HI is a decrease in the concentration of reduced (i.e. antioxidant-active) glutathione (GSH). In this study, we tested the effect of systemic administration of alpha-lipoic acid on levels of GSH in the cortex after HI. Although GSH levels were restored by 24h after HI, injury was not reduced compared to vehicle-treated mice. We also tested two other pharmacological approaches to reducing oxidative stress in hSOD-tg and wild-type littermates. Both the specific inhibitor of neuronal nitric oxide synthase, 7-nitroindazole (7NI), and the spin-trapping agent alpha-phenyl-tert-butyl-nitrone (PBN) did not reduce HI injury, however. Taken together, these results imply that H2O2 is a critical component of neonatal HI injury, and GPx1 plays an important role in the defense against this H2O2 and is thereby neuroprotective.