67 resultados para High Flow Conditions
Resumo:
Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing.
Resumo:
PURPOSE: To evaluate a widely used nontunneled triple-lumen central venous catheter in order to determine whether the largest of the three lumina (16 gauge) can tolerate high flow rates, such as those required for computed tomographic angiography. MATERIALS AND METHODS: Forty-two catheters were tested in vitro, including 10 new and 32 used catheters (median indwelling time, 5 days). Injection pressures were continuously monitored at the site of the 16-gauge central venous catheter hub. Catheters were injected with 300 and 370 mg of iodine per milliliter of iopamidol by using a mechanical injector at increasing flow rates until the catheter failed. The infusion rate, hub pressure, and location were documented for each failure event. The catheter pressures generated during hand injection by five operators were also analyzed. Mean flow rates and pressures at failure were compared by means of two-tailed Student t test, with differences considered significant at P < .05. RESULTS: Injections of iopamidol with 370 mg of iodine per milliliter generate more pressure than injections of iopamidol with 300 mg of iodine per milliliter at the same injection rate. All catheters failed in the tubing external to the patient. The lowest flow rate at which catheter failure occurred was 9 mL/sec. The lowest hub pressure at failure was 262 pounds per square inch gauge (psig) for new and 213 psig for used catheters. Hand injection of iopamidol with 300 mg of iodine per milliliter generated peak hub pressures ranging from 35 to 72 psig, corresponding to flow rates ranging from 2.5 to 5.0 mL/sec. CONCLUSION: Indwelling use has an effect on catheter material property, but even for used catheters there is a substantial safety margin for power injection with the particular triple-lumen central venous catheter tested in this study, as the manufacturer's recommendation for maximum pressure is 15 psig.
Resumo:
Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.
Resumo:
Recently, many studies about a network active during rest and deactivated during tasks emerged in the literature: the default mode network (DMN). Spatial and temporal DMN features are important markers for psychiatric diseases. Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects. From these findings, the conclusion can be drawn that an increase in resting state DMN activity may go along with an increase in theta power in high-load WM conditions. We followed this hypothesis in a study on 17 healthy subjects performing a visual Sternberg WM task. The DMN was obtained by a BOLD-ICA approach and its dynamics represented by the percent-strength during pre-stimulus periods. DMN dynamics were temporally correlated with EEG theta spectral power from retention intervals. This so-called covariance mapping yielded the spatial distribution of the theta EEG fluctuations associated with the dynamics of the DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention. However, load-dependent correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance during later retention. Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over the course of the retention period. Since both, WM performance and DMN activity, are markers of mental health, our results could be important for further investigations of psychiatric populations.
Resumo:
Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.
Resumo:
The diagnostic approach to vascular anomalies should include the distinction between vascular tumors (i.e. hemangiomas) and congential vascular malformations (CVMs). This step is based more on history and clinical examination rather than on instrumental evaluation. In children Duplex ultrasound and histology can be helpful to separate hypervasularized tumors from CVMs. Appropriate record of objective measures as size or flow volume is required in order to evaluate the progress of the pathology and/or to assess the results of adopted therapeutic interventions. The anatomic, pathological and hemodynamic characteristics, the secondary effects on the surrounding tissues and the systemic manifestations should be defined. Basic diagnostic tools are Duplex sonography followed by MRI or CT scanning. The definition of the vascular anomaly should be according to the Hamburg classification and should separate vascular tumors from vacular malformations followed by separation of high flow from low flow CVMs. Diagnostic investigations are best undertaken at centers where subsequent therapeutic interventions will be performed.
Resumo:
It has been repeatedly demonstrated that athletes in a state of ego depletion do not perform up to their capabilities. We assume that autonomous self-control exertion, in contrast to forced self-control exertion, can serve as a buffer against ego depletion effects and can help individuals to show superior performance. In the present study, we applied a between-subjects design to test the assumption that autonomously exerted self-control is less detrimental for subsequent self-control performance in sports than is forced self-control exertion. In a primary self-control task, the level of autonomy was manipulated through specific instructions, resulting in three experimental conditions (autonomy-supportive: n = 19; neutral: n = 19; controlling: n = 19). As a secondary self-control task, participants executed a series of tennis serves under high-pressure conditions, and performance accuracy served as our dependent variable. As expected, a one-way between-groups ANOVA revealed that participants from the autonomy-supportive condition performed significantly better under pressure than did participants from the controlling condition. These results further highlight the importance of autonomy-supportive instructions in order to enable athletes to show superior achievements in high-pressure situations. Practical implications for the coach–athlete relationship are discussed.
Resumo:
We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.
Resumo:
The floods that occurred on the Aare and Rhine rivers in May 2015 and the mostly successful handling of this event in terms of flood protection measures are a good reminder of how important it is to comprehend the causes and processes involved in such natural hazards. While the needed data series of gauge measurements and peak discharge calculations reach back to the 19th century, historical records dating further back in time can provide additional and useful information to help understanding extreme flood events and to evaluate prevention measures such as river dams and corrections undertaken prior to instrumental measurements. In my PhD project I will use a wide range of historical sources to assess and quantify past extreme flood events. It is part of the SNF-funded project “Reconstruction of the Genesis, Process and Impact of Major Pre-instrumental Flood Events of Major Swiss Rivers Including a Peak Discharge Quantification” and will cover the research locations Fribourg (Saane R.), Burgdorf (Emme R.), Thun, Bern (both Aare R.), and the Lake of Constance at the locations Lindau, Constance and Rorschach. My main goals are to provide a long time series of quantitative data for extreme flood events, to discuss the occurring changes in these data, and to evaluate the impact of the aforementioned human influences on the drainage system. Extracting information given in account books from the towns of Basel and Solothurn may also enable me to assess the frequency and seasonality of less severe river floods. Finally, historical information will be used for remodeling the historical hydrological regime to homogenize the historical data series to modern day conditions and thus make it comparable to the data provided by instrumental measurements. The method I will apply for processing all information provided by historical sources such as chronicles, newspapers, institutional records, as well as flood marks, paintings and archeological evidence has been developed and successfully applied to the site of Basel by Wetter et al. (2011). They have also shown that data homogenization is possible by reconstructing previous stream flow conditions using historical river profiles and by carefully observing and re-constructing human changes of the river bed and its surroundings. Taken all information into account, peak discharges for past extreme flood events will be calculated with a one-dimensional hydrological model.
Resumo:
The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry (PIV). Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.
Resumo:
Context. During September and October 2014, the OSIRIS cameras onboard the ESA Rosetta mission detected millions of single particles. Many of these dust particles appear as long tracks (due to both the dust proper motion and the spacecraft motion during the exposure time) with a clear brightness periodicity. Aims. We interpret the observed periodic features as a rotational and translational motion of aspherical dust grains. Methods. By counting the peaks of each track, we obtained statistics of a rotation frequency. We compared these results with the rotational frequency predicted by a model of aspherical dust grain dynamics in a model gas flow. By testing many possible sets of physical conditions and grain characteristics, we constrained the rotational properties of dust grains. Results. We analyzed on the motion of rotating aspherical dust grains with different cross sections in flow conditions corresponding to the coma of 67P/Churyumov-Gerasimenko qualitatively and quantitatively. Based on the OSIRIS observations, we constrain the possible physical parameters of the grains.
Resumo:
Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: (i) assess the influence of climatic and soil characteristics on the observed SADs, (ii) infer how environmental variability influences relative abundances, and (iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species.
Resumo:
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.
Resumo:
Little is known about the ocular and cerebral blood flow during exposure to increasingly hypoxic conditions at high altitudes. There is evidence that an increase in cerebral blood flow resulting from altered autoregulation constitutes a risk factor for acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) by leading to capillary overperfusion and vasogenic cerebral edema. The retina represents the only part of the central nervous system where capillary blood flow is visible and can be measured by noninvasive means. In this study we aimed to gain insights into retinal and choroidal autoregulatory properties during hypoxia and to correlate circulatory changes to symptoms of AMS and clinical signs of HACE. This observational study was performed within the scope of a high-altitude medical research expedition to Mount Muztagh Ata (7,546 m). Twenty seven participants underwent general and ophthalmic examinations up to a maximal height of 6,800 m. Examinations included fundus photography and measurements of retinal and choroidal blood flow, as well as measurement of arterial oxygen saturation and hematocrit. The initial increase in retinal blood velocity was followed by a decrease despite further ascent, whereas choroidal flow increase occurred later, at even higher altitudes. The sum of all adaptational mechanisms resulted in a stable oxygen delivery to the retina and the choroid. Parameters reflecting the retinal circulation and optic disc swelling correlated well with the occurrence of AMS-related symptoms. We demonstrate that sojourns at high altitudes trigger distinct behavior of retinal and choroidal blood flow. Increase in retinal but not in choroidal blood flow correlated with the occurrence of AMS-related symptoms.
Resumo:
The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979–2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located in its interior. This study further includes a comprehensive comparison of high precipitation in ERA-Interim with precipitation data from the Antarctic Mesoscale Prediction System (AMPS) and snow accumulation measurements from automatic weather stations (AWSs), with the limitations of such a comparison being discussed. The ERA-Interim and AMPS precipitation data agree very well. However, the correspondence between high precipitation in ERA-Interim and high snow accumulation at the AWSs is relatively weak. High-precipitation events at both Halvfarryggen and Kohnen are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern South Pacific several days before the precipitation event. At the surface, a cyclone located over the Weddell Sea is the main synoptic ingredient for high precipitation both at Halvfarryggen and at Kohnen. A blocking anticyclone downstream is not a requirement for high precipitation per se, but a larger share of blocking occurrences during the highest-precipitation days in DML suggests that these blocks strengthen the vertically integrated water vapor transport (IVT) into DML. A strong link between high precipitation and the IVT perpendicular to the local orography suggests that IVT could be used as a “proxy” for high precipitation, in particular over DML's interior.