153 resultados para HUMAN DENTAL STEM CELLS
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
OBJECTIVE: In a recent study, we demonstrated that mesenchymal stem cells (MSCs) derived from the synovial membranes of bovine shoulder joints could differentiate into chondrocytes when cultured in alginate. The purpose of the present study was to establish the conditions under which synovial MSCs derived from aging human donors can be induced to undergo chondrogenic differentiation using the same alginate system. METHODS: MSCs were obtained by digesting the knee-joint synovial membranes of osteoarthritic human donors (aged 59-76 years), and expanded in monolayer cultures. The cells were then seeded at a numerical density of 4x10(6)/ml within discs of 2% alginate, which were cultured in serum-containing or serum-free medium (the latter being supplemented with 1% insulin, transferrin, selenium (ITS). The chondrogenic differentiation capacity of the cells was tested by exposing them to the morphogens transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, insulin-like growth factor-1 (IGF-1), bone morphogenetic protein-2 (BMP-2) and BMP-7, as well as to the synthetic glucocorticoid dexamethasone. The relative mRNA levels of collagen types I and II, of aggrecan and of Sox9 were determined quantitatively by the real-time polymerase chain reaction (PCR). The extracellular deposition of proteoglycans was evaluated histologically after staining with Toluidine Blue, and that of type-II collagen by immunohistochemistry. RESULTS: BMP-2 induced the chondrogenic differentiation of human synovial MSCs in a dose-dependent manner. The response elicited by BMP-7 was comparable. Both of these agents were more potent than TGF-beta1. A higher level of BMP-2-induced chondrogenic differentiation was achieved in the absence than in the presence of serum. In the presence of dexamethasone, the BMP-2-induced expression of mRNAs for aggrecan and type-II collagen was suppressed; the weaker TGF-beta1-induced expression of these chondrogenic markers was not obviously affected. CONCLUSIONS: We have demonstrated that synovial MSCs derived from the knee joints of aging human donors possess chondrogenic potential. Under serum-free culturing conditions and in the absence of dexamethasone, BMP-2 and BMP-7 were the most potent inducers of this transformation process.
Resumo:
The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
We aimed to induce neural stem (NSC) and progenitor cells (NPC) from human placental tissues.
Resumo:
Chronic myelogenous leukemia (CML) results from a chromosomal translocation in hematopoietic stem or early progenitor cells that gives rise to the oncogenic BCR/ABL fusion protein. Clinically, CML has a chronic phase that eventually evolves into an accelerated stage and blast crisis. A CML-specific immune response is thought to contribute to the control of disease. Whether the immune system can also promote disease progression is not known. In the present study, we investigated the possibility that the TNF receptor family member CD27 is present on leukemia stem cells (LSCs) and mediates effects of the immune system on CML. In a mouse model of CML, BCR/ABL+ LSCs and leukemia progenitor cells were found to express CD27. Binding of CD27 by its ligand, CD70, increased expression of Wnt target genes in LSCs by enhancing nuclear localization of active β-catenin and TRAF2- and NCK-interacting kinase (TNIK). This resulted in increased proliferation and differentiation of LSCs. Blocking CD27 signaling in LSCs delayed disease progression and prolonged survival. Furthermore, CD27 was expressed on CML stem/progenitor cells in the bone marrow of CML patients, and CD27 signaling promoted growth of BCR/ABL+ human leukemia cells by activating the Wnt pathway. Since expression of CD70 is limited to activated lymphocytes and dendritic cells, our results reveal a mechanism by which adaptive immunity contributes to leukemia progression. In addition, targeting CD27 on LSCs may represent an attractive therapeutic approach to blocking the Wnt/β-catenin pathway in CML.
Resumo:
Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs).
Resumo:
Introduction: Prolyl hydroxylase (PHD) inhibitors can induce a proangiogenic response that stimulates regeneration in soft and hard tissues. However, the effect of PHD inhibitors on the dental pulp is unclear. The purpose of this study was to evaluate the effects of PHD inhibitors on the proangiogenic capacity of human dental pulp–derived cells. Methods: To test the response of dental pulp–derived cells to PHD inhibitors, the cells were exposed to dimethyloxalylglycine, desferrioxamine, L-mimosine, and cobalt chloride. To assess the response of dental pulp cells to a capping material supplemented with PHD inhibitors, the cells were treated with supernatants from calcium hydroxide. Viability, proliferation, and protein synthesis were assessed by formazan formation, 3[H]thymidine, and 3[H]leucine incorporation assays. The effect on the proangiogenic capacity was measured by immunoassays for vascular endothelial growth factor (VEGF). Results: We found that all 4 PHD inhibitors can reduce viability, proliferation, and protein synthesis at high concentrations. At nontoxic concentrations and in the presence of supernatants from calcium hydroxide, PHD inhibitors stimulated the production of VEGF in dental pulp–derived cells. When calcium hydroxide was supplemented with the PHD inhibitors, the supernatants from these preparations did not significantly elevate VEGF levels. Conclusions: These results show that PHD inhibitors can stimulate VEGF production of dental pulp–derived cells, suggesting a corresponding increase in their proangiogenic capacity. Further studies will be required to understand the impact that this might have on pulp regeneration.
Resumo:
Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
There is a lot of excitement about the potential use of multipotent neural stem cells for the treatment of neurodegenerative diseases. However, the strategy is compromised by the general loss of multipotency and ability to generate neurons after long-term in vitro propagation. In the present study, human embryonic (5 weeks post-conception) ventral mesencephalic (VM) precursor cells were propagated as neural tissue-spheres (NTS) in epidermal growth factor (EGF; 20 ng/ml) and fibroblast growth factor 2 (FGF2; 20 ng/ml). After more than 325 days, the NTS were transferred to media containing either EGF+FGF2, EGF+FGF2+heparin or leukemia inhibitory factor (LIF; 10 ng/ml)+FGF2+heparin. Cultures were subsequently propagated for more than 180 days with NTS analyzed at various time-points. Our data show for the first time that human VM neural precursor cells can be long-term propagated as NTS in the presence of EGF and FGF2. A positive effect of heparin was found only after 150 days of treatment. After switching into different media, only NTS exposed to LIF contained numerous cells positive for markers of newly formed neurons. Besides of demonstrating the ability of human VM NTS to be long-term propagated, our study also suggests that LIF favours neurogenic differentiation of human VM precursor cells.
Resumo:
BACKGROUND Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. METHODS Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7). Bone marrow derived stromal cells (BMSC) from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later. RESULTS In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+) indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis. CONCLUSIONS HGF-positive stem cells are present in human fibrotic lung tissue (UIP) and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.