77 resultados para HIPS
Resumo:
BACKGROUND: Recent advances in the understanding of the anatomy and function of the acetabular labrum suggest that it is important for normal joint function. We found no available data regarding whether labral refixation after treatment of femoro-acetabular impingement affects the clinical and radiographic results. METHODS: We retrospectively reviewed the clinical and radiographic results of fifty-two patients (sixty hips) with femoro-acetabular impingement who underwent arthrotomy and surgical dislocation of the hip to allow trimming of the acetabular rim and femoral osteochondroplasty. In the first twenty-five hips, the torn labrum was resected (Group 1); in the next thirty-five hips, the intact portion of the labrum was reattached to the acetabular rim (Group 2). At one and two years postoperatively, the Merle d'Aubigné clinical score and the Tönnis arthrosis classification system were used to compare the two groups. RESULTS: At one year postoperatively, both groups showed a significant improvement in their clinical scores (mainly pain reduction) compared with their preoperative values (p = 0.0003 for Group 1 and p < 0.0001 for Group 2). At two years postoperatively, 28% of the hips in Group 1 (labral resection) had an excellent result, 48% had a good result, 20% had a moderate result, and 4% had a poor result. In contrast, in Group 2 (labral reattachment), 80% of the hips had an excellent result, 14% had a good result, and 6% had a moderate result. Comparison of the clinical scores between the two groups revealed significantly better outcomes for Group 2 at one year (p = 0.0001) and at two years (p = 0.01). Radiographic signs of osteoarthritis were significantly more prevalent in Group 1 than in Group 2 at one year (p = 0.02) and at two years (p = 0.009). CONCLUSIONS: Patients treated with labral refixation recovered earlier and had superior clinical and radiographic results when compared with patients who had undergone resection of a torn labrum. Although the results must be considered preliminary, we now recommend refixation of the intact portion of the labrum after trimming of the acetabular rim during surgical treatment of femoro-acetabular impingement.
Resumo:
Osteoarthritis is thought to be caused by a combination of intrinsic vulnerabilities of the joint, such as anatomic shape and alignment, and environmental factors, such as body weight, injury, and overuse. It has been postulated that much of osteoarthritis is due to anatomic deformities. Advances in surgical techniques such as the periacetabular osteotomy, safe surgical dislocation of the hip, and hip arthroscopy have provided us with effective and safe tools to correct these anatomical problems. The limiting factor in treatment outcome in many mechanically compromised hips is the degree of cartilage damage which has occurred prior to treatment. In this regard, the role of imaging, utilizing plain radiographs in conjunction with magnetic resonance imaging, is becoming vitally important for the detection of these anatomic deformities and pre-radiographic arthritis. In this article, we will outline the plain radiographic features of hip deformities that can cause instability or impingement. Additionally, we will illustrate the use of MRI imaging to detect subtle anatomic abnormalities, as well as the use of biochemical imaging techniques such as dGEMRIC to guide clinical decision making.
Resumo:
The delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique has shown promising results in pilot clinical studies of early osteoarthritis. Currently, its broader acceptance is limited by the long scan time and the need for postprocessing to calculate the T1 maps. A fast T1 mapping imaging technique based on two spoiled gradient echo images was implemented. In phantom studies, an appropriate flip angle combination optimized for center T1 of 756 to 955 ms yielded excellent agreement with T1 measured using the inversion recovery technique in the range of 200 to 900 ms, of interest in normal and diseased cartilage. In vivo validation was performed by serially imaging 26 hips using the inversion recovery and the Fast 2 angle T1 mapping techniques (center T1 756 ms). Excellent correlation with Pearson correlation coefficient R2 of 0.74 was seen and Bland-Altman plots demonstrated no systematic bias.
Resumo:
The purpose of this study was to validate the accuracy, consistency, and reproducibility/reliability of a new method for correction of pelvic tilt and rotation of radiographic hip parameters for pincer type of femoroacetabular impingement on an anteroposterior pelvic radiograph. Thirty cadaver hips and 100 randomized, blinded AP pelvic radiographs were used for investigation. To detect the software accuracy, the calculated femoral head coverage and classic hip parameters determined with our software were compared to reference measurements based on CT scans or conventional radiographs in a neutral orientation as gold standard. To investigate software consistency, differences among the different parameters for each cadaver pelvis were calculated when reckoned back from a random to the neutral orientation. Intra- and interobserver comparisons were used to analyze the reliability and reproducibility of all parameters. All but two parameters showed a good-to-very good accuracy with the reference measurements. No relevant systematic errors were detected in the Bland-Altman analysis. Software consistency was good-to-very good for all parameters. A good-to-very good reliability and reproducibility was found for a substantial number of the evaluated radiographic acetabular parameters. The software appears to be an accurate, consistent, reliable, and reproducible method for analysis of acetabular pathomorphologies.
Resumo:
INTRODUCTION: We report the results of a titanium acetabular reinforcement ring with a hook (ARRH) in primary total hip arthroplasty (THA), which was introduced in 1987 and continues to be used routinely in our center. The favorable results of this device in arthroplasty for developmental dysplasia and difficult revisions motivated its use in primary THA. With this implant only minimal acetabular reaming is necessary, anatomic positioning is achieved by placing the hook around the teardrop and a homogenous base for cementing the polyethylene cup is provided. MATERIALS AND METHODS: Between April 1987 and December 1991, 241 THAs with insertion of an ARRH were performed in 178 unselected, consecutive patients (average age 58 years; range 30-84 years) with a secondary osteoarthrosis in 41% of the cases. RESULTS: At the time of the latest follow-up, 33 patients (39 hips) had died and 17 cases had been lost to follow-up. The median follow-up was 122 months with a minimum of 10 years. Eight hips had been revised, leaving 177 hips in 120 living patients without revision. Six cups were revised because of aseptic loosening. Two hips were revised for sepsis. The mean Merle d'Aubigné score for the remaining hips was 16 (range 7-18) at the latest follow-up. For aseptic loosening, the probability of survival of the cup was 0.97 (95% confidence interval, 0.94-0.99). However, analysis of radiographs implied loosening in seven other cups without clinical symptoms. CONCLUSIONS: The results of primary THA using an acetabular reinforcement ring parallel the excellent results of these implants often observed in difficult primary and revision arthroplasty at a minimum of 10 years. Survivorship is comparable to modern cementless implants. Medial migration that occurs with loosening of the acetabular component seems to be prevented with this implant. Radiographic loosening signs can exist without clinical symptoms.
Resumo:
Structural deformities of the femoral head occurring during skeletal development (eg, Legg-Calvé-Perthes disease) are associated with individual shapes of the acetabulum but it is unclear whether differences in acetabular shape are associated with differences in proximal femoral shape. We questioned whether the amount of acetabular coverage influences femoral morphology. We retrospectively compared the proximal femoral anatomy of 50 selected patients (50 hips) with developmental dysplasia of the hip (lateral center-edge angle [LCE] < or = 25 degrees ; acetabular index > or = 14 degrees ) with 45 selected patients (50 hips) with a deep acetabulum (LCE > or = 39 degrees ). Using MRI arthrography we measured head sphericity, epiphyseal shape, epiphyseal extension, and femoral head-neck offset. A deep acetabulum was associated with a more spherical head shape, increased epiphyseal height with a pronounced extension of the epiphysis towards the femoral neck, and an increased offset. In contrast, dysplastic hips showed an elliptical femoral head, decreased epiphyseal height with a less pronounced extension of the epiphysis, and decreased head-neck offset. Hips with different acetabular coverage are associated with different proximal femoral anatomy. A nonspherical head in dysplastic hips could lead to joint incongruity after an acetabular reorientation procedure. LEVEL OF EVIDENCE: Level IV, retrospective comparative study. See the Guidelines for Authors for a complete description of levels of evidence.
Resumo:
Although current concepts of anterior femoroacetabular impingement predict damage in the labrum and the cartilage, the actual joint damage has not been verified by computer simulation. We retrospectively compared the intraoperative locations of labral and cartilage damage of 40 hips during surgical dislocation for cam or pincer type femoroacetabular impingement (Group I) with the locations of femoroacetabular impingement in 15 additional hips using computer simulation (Group II). We found no difference between the mean locations of the chondrolabral damage of Group I and the computed impingement zone of Group II. The standard deviation was larger for measures of articular damage from Group I in comparison to the computed values of Group II. The most severe hip damage occurred at the zone of highest probability of femoroacetabular impact, typically in the anterosuperior quadrant of the acetabulum for both cam and pincer type femoroacetabular impingements. However, the extent of joint damage along the acetabular rim was larger intraoperatively than that observed on the images of the 3-D joint simulations. We concluded femoroacetabular impingement mechanism contributes to early osteoarthritis including labral lesions. LEVEL OF EVIDENCE: Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Resumo:
The goal of the Bernese periacetabular osteotomy is to correct the deficient acetabular coverage in hips with developmental dysplasia to prevent secondary osteoarthrosis. We determined the 20-year survivorship of symptomatic patients treated with this procedure, determined the clinical and radiographic outcomes of the surviving hips, and identified factors predicting poor outcome. We retrospectively evaluated the first 63 patients (75 hips) who underwent periacetabular osteotomy at the institution where this technique was developed. The mean age of the patients at surgery was 29 years (range, 13-56 years), and preoperatively 24% presented with advanced grades of osteoarthritis. Four patients (five hips) were lost to followup and one patient (two hips) died. The remaining 58 patients (68 hips) were followed for a minimum of 19 years (mean, 20.4 years; range, 19-23 years) and 41 hips (60%) were preserved at last followup. The overall mean Merle d'Aubigné and Postel score decreased in comparison to the 10-year value and was similar to the preoperative score. We observed no major changes in any of the radiographic parameters during the 20-year postoperative period except the osteoarthritis score. We identified six factors predicting poor outcome: age at surgery, preoperative Merle d'Aubigné and Postel score, positive anterior impingement test, limp, osteoarthrosis grade, and the postoperative extrusion index. Periacetabular osteotomy is an effective technique for treating symptomatic developmental dysplasia of the hip and can maintain the natural hip at least 19 years in selected patients. LEVEL OF EVIDENCE: Level III, prognostic study.
Resumo:
Femoroacetabular impingement is considered a cause of hip osteoarthrosis. In cam impingement, an aspherical head-neck junction is squeezed into the joint and causes acetabular cartilage damage. The anterior offset angle alpha, observed on a lateral crosstable radiograph, reflects the location where the femoral head becomes aspheric. Previous studies reported a mean angle alpha of 42 degrees in asymptomatic patients. Currently, it is believed an angle alpha of 50 degrees to 55 degrees is normal. The aim of this study was to identify that angle alpha which allows impingement-free motion. In 45 patients who underwent surgical treatment for femoroacetabular impingement, we measured the angle alpha preoperatively, immediately postoperatively, and 1 year postoperatively. All hips underwent femoral correction and, if necessary, acetabular correction. The correction was considered sufficient when, in 90 degrees hip flexion, an internal rotation of 20 degrees to 25 degrees was possible. The angle alpha was corrected from a preoperative mean of 66 degrees (range, 45 degrees - 79 degrees) to 43 degrees (range, 34 degrees - 60 degrees) postoperatively. Because the acetabulum is corrected to normal first, the femoral correction is tested against a normal acetabulum. We therefore concluded an angle alpha of 43 degrees achieved surgically and with impingement-free motion, represents the normal angle alpha, an angle lower than that currently considered sufficient.
Resumo:
Refixation of a trochanteric osteotomy carries a high complication rate. To enhance stability and facilitate anatomic reduction of the trochanteric fragment, we have introduced a stepped osteotomy. Between April 2006 and June 2007, we performed surgical hip dislocations using the modified trochanteric osteotomy combined with a relatively aggressive rehabilitation program. Full weightbearing was allowed at a mean of 42 days (range, 33-54 days). The minimum followup was 8 months (median, 13 months; range, 8-24 months). Postoperative radiographs were assessed prospectively for consolidation or the appearance of malreduction/nonunion/malunion of the osteotomy and heterotopic ossification. In 110 of 113 hips, the trochanteric osteotomy healed in the anatomic position. Two patients had a trochanteric delayed union with loss of anatomic position, and one additional patient underwent revision surgery for a pseudarthrosis and cranial migration of the trochanteric fragment. All three complications related to healing occurred in the first 60 patients when the step height was 3 to 4 mm. After increasing the step heights to 6 mm, we observed no healing complications. Despite more aggressive postoperative mobilization, the incidence of malunion or nonunion related to the new stepped osteotomy is low and approaches zero for steps of 6 mm. It is now our technique of choice.
Resumo:
Blood perfusion to the femoral head might be endangered during the surgical approach or the preparation of the femoral head or both in hip resurfacing arthroplasty. The contribution of the intramedullary blood supply to the femoral head in osteoarthritis is questionable. Therefore, the contribution of the extraosseous blood supply to osteoarthritic femoral heads was measured intraoperatively to question if there is measurable blood flow between the epiphysis and metaphysis in osteoarthritic hips in case of extraosseus vessel damage. At defined points during surgery we acquired the epiphyseal and metaphyseal femoral head perfusion by high-energy laser Doppler flowmetry. Complete femoral neck osteotomy sparing the retinacular vessels to simulate intraosseous blood disruption showed unchanged epiphyseal blood flow compared to initial measurement after capsulotomy. The pulsatile signal disappeared after transection of the retinacular vessels. Based on these acute measurements, we conclude intramedullary blood vessels to the femoral head do not provide measurable blood supply to the epiphysis once the medial femoral circumflex artery or the retinacular vessels have been damaged. We recommend the use of a safe surgical approach for hip resurfacing and careful implantation of the femoral component to respect blood supply to the femoral head and neck region in hip resurfacing arthroplasty.
Resumo:
Asphericity of the femoral head-neck junction is one cause for femoroacetabular impingement of the hip. However, the asphericity often is underestimated on conventional radiographs. This study compares the presence of asphericity on conventional radiographs with its appearance on radial slices of magnetic resonance arthrography (MRA). We retrospectively reviewed 58 selected hips in 148 patients who underwent a surgical dislocation of the hip. To assess the circumference of the proximal femur, alpha angle and height of asphericity were measured in 14 positions using radial slices of MRA. The hips were assigned to one of four groups depending on the appearance of the head-neck junction on anteroposterior pelvic and lateral crosstable radiographs. Group I (n = 19) was circular on both planes, Group II (n = 19) was aspheric on the crosstable view, Group III (n = 4) was aspheric on the anteroposterior view, and Group IV (n = 13) was aspheric on both views. In all four groups, the highest alpha angle was found in the anterosuperior area of the head-neck junction. Even when conventional radiographs appeared normal, an increased alpha angle was present anterosuperiorly. Without the use of radial slices in MRA, the asphericity would be underestimated in these patients.
Resumo:
Femoroacetabular impingement due to metaphyseal prominence is associated with the slippage in patients with slipped capital femoral epiphysis (SCFE), but it is unclear whether the changes in femoral metaphysis morphology are associated with range of motion (ROM) changes or type of impingement. We asked whether the femoral head-neck junction morphology influences ROM analysis and type of impingement in addition to the slip angle and the acetabular version. We analyzed in 31 patients with SCFE the relationship between the proximal femoral morphology and limitation in ROM due to impingement based on simulated ROM of preoperative CT data. The ROM was analyzed in relation to degree of slippage, femoral metaphysis morphology, acetabular version, and pathomechanical terms of "impaction" and "inclusion." The ROM in the affected hips was comparable to that in the unaffected hips for mild slippage and decreased for slippage of more than 30 degrees. The limitation correlated with changes in the metaphysic morphology and changed acetabular version. Decreased head-neck offset in hips with slip angles between 30 degrees and 50 degrees had restricted ROM to nearly the same degree as in severe SCFE. Therefore, in addition to the slip angle, the femoral metaphysis morphology should be used as criteria for reconstructive surgery.
Resumo:
PURPOSE: The purpose of this study was to evaluate the precision of central hip arthroscopy in the assessment and treatment of pincer-type femoroacetabular impingement (FAI) avoiding the posterolateral portal, with its close proximity to the main arterial blood supply of the femoral head, the medial circumflex femoral artery. METHODS: Seven human cadaveric hips underwent arthroscopic trimming of the acetabular labrum and rim along a preoperatively defined 105 degrees arc of resection for treatment of a presumed pincer-type lesion. After the arthroscopic procedure, all specimens were dissected and measured for evaluation of the location, quantity, and quality of the area undergoing resection. RESULTS: The difference between the actual and planned arc of resection was 18.7 degrees +/- 4.7 degrees (range, 2 degrees to 34 degrees). This was mainly because of a lack of accuracy in the presumed posterior starting point (PSP), with a mean deviation of 19 degrees +/- 3.4 degrees (range, 10 degrees to 36 degrees). Correlation analysis showed that variance in the arc of resection was mainly dependent on the PSP (r = 0.739, P = .058). CONCLUSIONS: Central hip arthroscopy is a feasible option in treating anterosuperior pincer-type FAI by use of the anterior and anterolateral portals only. This cadaveric study showed that there is a significant risk of underestimating the actual arc of resection compared with the planned arc of resection for posterosuperior pincer-type lesions because of the modest accuracy in determining the PSP of the resection. CLINICAL RELEVANCE: Accurate preoperative planning and arthroscopic identification of anatomic landmarks at the acetabular side are crucial for the definition of the appropriate starting and ending points in the treatment of pincer-type FAI. Whereas anterosuperior pincer-type lesions can be addressed very precisely with our technique, the actual resection of posterosuperior lesions averaged 19 degrees less than the planned resection, which may have clinical implications.
Resumo:
Our goal was to validate accuracy, consistency, and reproducibility/reliability of a new method for determining cup orientation in total hip arthroplasty (THA). This method allows matching the 3D-model from CT images or slices with the projected pelvis on an anteroposterior pelvic radiograph using a fully automated registration procedure. Cup orientation (inclination and anteversion) is calculated relative to the anterior pelvic plane, corrected for individual malposition of the pelvis during radiograph acquisition. Measurements on blinded and randomized radiographs of 80 cadaver and 327 patient hips were investigated. The method showed a mean accuracy of 0.7 +/- 1.7 degrees (-3.7 degrees to 4.0 degrees) for inclination and 1.2 +/- 2.4 degrees (-5.3 degrees to 5.6 degrees) for anteversion in the cadaver trials and 1.7 +/- 1.7 degrees (-4.6 degrees to 5.5 degrees) for inclination and 0.9 +/- 2.8 degrees (-5.2 degrees to 5.7 degrees) for anteversion in the clinical data when compared to CT-based measurements. No systematic errors in accuracy were detected with the Bland-Altman analysis. The software consistency and the reproducibility/reliability were very good. This software is an accurate, consistent, reliable, and reproducible method to measure cup orientation in THA using a sophisticated 2D/3D-matching technique. Its robust and accurate matching algorithm can be expanded to statistical models.