64 resultados para Gyldén, C. W.: Suomalaisen metsänhoidon opas
Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy
Resumo:
BACKGROUND CONTEXT Proteolytic enzyme digestion of the intervertebral disc (IVD) offers a method to simulate a condition of disc degeneration for the study of cell-scaffold constructs in the degenerated disc. PURPOSE To characterize an in vitro disc degeneration model (DDM) of different severities of glycosaminoglycans (GAG) and water loss by using papain, and to determine the initial response of the human mesenchymal stem cells (MSCs) introduced into this DDM. STUDY DESIGN Disc degeneration model of a bovine disc explant with an end plate was induced by the injection of papain at various concentrations. Labeled MSCs were later introduced in this model. METHODS Phosphate-buffered saline (PBS control) or papain in various concentrations (3, 15, 30, 60, and 150 U/mL) were injected into the bovine caudal IVD explants. Ten days after the injection, GAG content of the discs was evaluated by dimethylmethylene blue assay and cell viability was determined by live/dead staining together with confocal microscopy. Overall matrix composition was evaluated by histology, and water content was visualized by magnetic resonance imaging. Compressive and torsional stiffness of the DDM were also recorded. In the second part, MSCs were labeled with a fluorescence cell membrane tracker and injected into the nucleus of the DDM or a PBS control. Mesenchymal stem cell viability and distribution were evaluated by confocal microscopy. RESULTS A large drop of GAG and water content of the bovine disc were obtained by injecting >30 U/mL papain. Magnetic resonance imaging showed Grade II, III, and IV disc degeneration by injecting 30, 60, and 150 U/mL papain. A cavity in the center of the disc could facilitate later injection of the nucleus pulposus tissue engineering construct while retaining an intact annulus fibrosus. The remaining disc cell viability was not affected. Mesenchymal stem cells injected into the protease-treated DDM disc showed significantly higher cell viability than when injected into the PBS-injected control disc. CONCLUSIONS By varying the concentration of papain for injection, an increasing amount of GAG and water loss could be induced to simulate the different severities of disc degeneration. MSC suspension introduced into the disc has a very low short-term survival. However, it should be clear that this bovine IVD DDM does not reflect a clinical situation but offers exciting possibilities to test novel tissue engineering protocols.
Resumo:
Eye movement behaviour during visual exploration of 24 patients with probable Alzheimer's disease and 24 age-matched controls was compared in a clock reading task. Controls were found to focus exploration on distinct areas at the end of each clock hand. The sum of these two areas of highest fixation density was defined as the informative region of interest (ROI). In Alzheimer's disease patients, visual exploration was less focused, with fewer fixations inside the ROI, and the time until the first fixation was inside the ROI was significantly delayed. Changes of fixation distribution correlated significantly with the ability to read the clock correctly, but did not correlate with dementia severity. In Alzheimer's disease patients, fixations were longer and saccade amplitudes were smaller. The altered visual exploration in Alzheimer's disease might be related to parietal dysfunction or to an imbalance between a degraded occipito-parietal and relatively preserved occipito-temporal visual network.
Resumo:
The study investigated the influence of double-pulse transcranial magnetic stimulation (dTMS) on memory-guided saccade triggering. Double pulses with interstimulus intervals (ISIs) of 35, 50, 65 or 80 ms were applied over the right frontal eye field (FEF) and as control over the occipital cortex. A significant dTMS effect was found exclusively for contralateral saccades; latency of memory-guided saccades was reduced after FEF stimulation with an ISI of 50 ms compared to latency without stimulation. This effect proved to be specific for the ISI of 50 ms over the FEF because control stimulation with the same ISI over the occipital cortex had no significant effect on latency of memory-guided saccades. The results of our study showed that, by using an appropriate ISI, dTMS is able to facilitate contralateral saccade triggering by stimulating the FEF. This suggests that TMS interferes specifically with saccade triggering mechanisms, probably by acting on presaccadic neurons of the FEF.
Resumo:
Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration
Resumo:
The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and θ23≤π/4 yields a best-fit mixing angle sin2(2θ23)=1.000 and mass splitting |Δm232|=2.44×10−3 eV2/c4. If θ23≥π/4 is assumed, the best-fit mixing angle changes to sin2(2θ23)=0.999 and the mass splitting remains unchanged.
Resumo:
The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92 ± 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm232 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm232|=2.4×10−3 eV2, sin2θ23=0.5, δCP=0, and Δm232>0 (Δm232<0), a best-fit value of sin22θ13 = 0.140+0.038−0.032 (0.170+0.045−0.037) is obtained.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Resumo:
PURPOSE Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading. METHODS Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz. RESULTS Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group. CONCLUSIONS Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.