57 resultados para Globe Land Cover - Share
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future.
Resumo:
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.
Resumo:
The ongoing rapid and vast land cover and land use transformations in Laos are only documented by punctual local case studies; information on national level is barely available. We explore ways to address this by using MODIS vegetation index times series data to detect medium to large scale transformation on the national level.
Resumo:
A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.
Resumo:
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ± 1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr − 1, ELUC 0.9 ± 0.5 GtC yr − 1, GATM 4.3 ± 0.1 GtC yr − 1, S OCEAN 2.5 ± 0.5 GtC yr − 1, and S LAND 2.8 ± 0.8 GtC yr − 1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr − 1, 2.2 % above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr − 1, SOCEANwas 2.9 ± 0.5 GtC yr −1, and assuming an ELU Cof 1.0 ± 0.5 GtC yr − 1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr − 1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 con- centration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1 % (1.1–3.1 %) to 9.9 ± 0.5 GtC in 2013, 61 % above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70 % from EFF (390 ± 20 GtC) and 30 % from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center.
Resumo:
This atlas presents a comprehensive set of thematic maps depicting a wide range of aspects of the Songwe river area. It includes baseline maps (such as topographic overview, hillshade), satellite images (years 1991, 2001, 2004), land cover and land cover change, biomass and biomass change, priority conservation areas, resource management (watershed classification, watershed classification combined with biomass, soil erosion), accessibility and special maps (such as historical river course). Map clippings of the most important maps facilitate the readability of the maps. The accompanying explanatory text sheets contain graphics and information about material, methods, results and interpretation.
Resumo:
Maps (elevation, slope, land cover/land use and density) and tables about Morogoro, Dodoma, Singida, Tabora and Shinyango regions, Tanzania.
Resumo:
The north-eastern escarpment of Madagascar has been deemed a global hotspot of biodiversity due to its high levels of endemic speciesbeing heavily threatened by accelerated deforestation rates and landscape changes. The main concern for conservation of the remaining humid primary forests is the shifting cultivation practices of local smallholder farmers for rice production. According to the mainstream narrative, human population growth leads to a shortening of crop-fallow cycles and thus to the accelerated conversion of forests to agricultural land. However, little is currently known about the dynamic changes between forest and shifting cultivation systems at the regional level. Existing land cover change analyses in this area have so far only focused on binary forest to non-forest changes and have therefore failed to account for the dynamic nature of the change processes between forest and different agriculture land use systems. This can be partly explained by the significant challenge to delineate shifting cultivation systems on land cover maps using traditional remote sensing classification approaches. To address this gap we therefore applied a novel GIS approach, that was originally developed for the assessment of shifting cultivation dynamics in Laos and has so far never been applied elsewhere, to map shifting cultivation of different crop-fallow lengths as well as permanent agriculture land use at the regional level. Change analyses of land use maps between 1995 and 2011 allowed us to comprehend the general trends of land use trajectories and their spatial variation. This more detailed understanding of land use change dynamics is key to plan for successful interventions to slow forest loss while at the same time improving local livelihoods. We further believe that this approach holds great potential for conservation monitoring in this resource-rich but povertyprone conservation hotspot.
Resumo:
Temperature reconstructions for the end of the Pleistocene and the first half of the Holocene based on biotic proxies are rare for inland Europe around 49°N. We analysed a 7 m long sequence of lake deposits in the Vihorlat Mts in eastern Slovakia (820 m a.s.l.). Chironomid head capsules were used to reconstruct mean July temperature (TJuly), other proxies (diatoms, green algae, pollen, geochemistry) were used to reconstruct local environmental changes that might have affected the climate reconstruction, such as epilimnetic total phosphorus concentrations (TP), lake level changes and development of surrounding vegetation. During the Younger Dryas (YD), temperature fluctuated between 7 and 11 °C, with distinct, decadal to centennial scale variations, that agree with other palaeoclimate records in Europe such as δ18O content in stalagmites or Greenland ice cores. The results indicate that the site was somewhat colder than expected from the general south-to-north YD temperature gradient within Europe, possibly because of north-facing exposition. The warmer phases of the YD were characterised by low water level or even complete desiccation of the lake (12,200-12,400 cal yr BP). At the Late-Glacial/Holocene transition TJuly steeply increased from from 11 to 15.5 °C (11,700-11,400 cal yr BP) - the highest TJuly for entire sequence. This rapid climate change was reflected by all proxies as a compositional change and increasing species diversity. The open woodlands of Pinus, Betula, Larix and Picea were replaced by broad-leaved temperate forests dominated by Betula, later by Ulmus and finally by Corylus (ca 9700 cal yr BP). At the same time, input of eroded coarse-grained material into the lake decreased and organic matter (LOI) and biogenic silica increased. The Early-Holocene climate was rather stable till 8700 cal yr BP, with temporary decrease in TJuly around 11,200 cal yr BP. The lake was productive with a well-developed littoral, as indicated by both diatoms and chironomids. A distinct decline of TJuly to 10 °C between 8700 and 8000 cal yr BP was associated with decreasing chironomid diversity and increasing climate moistening indicated by pollen. Tychoplanktonic and phosphorus-demanding diatoms increased which might be explained by hydrological and land-cover changes. Later, a gradual warming started after 7000 cal yr BP and representation of macrophytes, periphytic diatoms and littoral chironomids increased. Our results suggest that the Holocene thermal maximum was taking place unusually early in the Holocene at our study site, but its timing might be affected by topography and mesoclimate. We further demonstrated that temperature changes had coincided with variations in local hydrology
Resumo:
Seasonal snow cover is of great environmental and socio-economic importance for the European Alps. Therefore a high priority has been assigned to quantifying its temporal and spatial variability. Complementary to land-based monitoring networks, optical satellite observations can be used to derive spatially comprehensive information on snow cover extent. For understanding long-term changes in alpine snow cover extent, the data acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensors mounted onboard the National Oceanic and Atmospheric Association (NOAA) and Meteorological Operational satellite (MetOp) platforms offer a unique source of information. In this paper, we present the first space-borne 1 km snow extent climatology for the Alpine region derived from AVHRR data over the period 1985–2011. The objective of this study is twofold: first, to generate a new set of cloud-free satellite snow products using a specific cloud gap-filling technique and second, to examine the spatiotemporal distribution of snow cover in the European Alps over the last 27 yr from the satellite perspective. For this purpose, snow parameters such as snow onset day, snow cover duration (SCD), melt-out date and the snow cover area percentage (SCA) were employed to analyze spatiotemporal variability of snow cover over the course of three decades. On the regional scale, significant trends were found toward a shorter SCD at lower elevations in the south-east and south-west. However, our results do not show any significant trends in the monthly mean SCA over the last 27 yr. This is in agreement with other research findings and may indicate a deceleration of the decreasing snow trend in the Alpine region. Furthermore, such data may provide spatially and temporally homogeneous snow information for comprehensive use in related research fields (i.e., hydrologic and economic applications) or can serve as a reference for climate models.
Resumo:
Desertification research conventionally focuses on the problem – that is, degradation – while neglecting the appraisal of successful conservation practices. Based on the premise that Sustainable Land Management (SLM) experiences are not sufficiently or comprehensively documented, evaluated, and shared, the World Overview of Conservation Approaches and Technologies (WOCAT) initiative (www.wocat.net), in collaboration with FAO’s Land Degradation Assessment in Drylands (LADA) project (www.fao.org/nr/lada/) and the EU’s DESIRE project (http://www.desire-project.eu/), has developed standardised tools and methods for compiling and evaluating the biophysical and socio-economic knowledge available about SLM. The tools allow SLM specialists to share their knowledge and assess the impact of SLM at the local, national, and global levels. As a whole, the WOCAT–LADA–DESIRE methodology comprises tools for documenting, self-evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing and decision support in the field, at the planning level, and in scaling up identified good practices. SLM depends on flexibility and responsiveness to changing complex ecological and socioeconomic causes of land degradation. The WOCAT tools are designed to reflect and capture this capacity of SLM. In order to take account of new challenges and meet emerging needs of WOCAT users, the tools are constantly further developed and adapted. Recent enhancements include tools for improved data analysis (impact and cost/benefit), cross-scale mapping, climate change adaptation and disaster risk management, and easier reporting on SLM best practices to UNCCD and other national and international partners. Moreover, WOCAT has begun to give land users a voice by backing conventional documentation with video clips straight from the field. To promote the scaling up of SLM, WOCAT works with key institutions and partners at the local and national level, for example advisory services and implementation projects. Keywords: Sustainable Land Management (SLM), knowledge management, decision-making, WOCAT–LADA–DESIRE methodology.
Resumo:
Traditionally, desertification research has focused on degradation assessments, whereas prevention and mitigation strategies have not sufficiently been emphasised, although the concept of sustainable land management (SLM) is increasingly being acknowledged. SLM strategies are interventions at the local to regional scale aiming at increasing productivity, protecting the natural resource base, and improving livelihoods. The global WOCAT initiative and its partners have developed harmonized frameworks to compile, evaluate and analyse the impact of SLM practices around the globe. Recent studies within the EU research project DESIRE developed a methodological framework that combines a collective learning and decision-making approach with use of best practices from the WOCAT database. In-depth assessment of 30 technologies and 8 approaches from 17 desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats such as water scarcity, soil and vegetation degradation, low production, climate change, resource use conflicts and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Water harvesting offers under-exploited opportunities for the drylands and the predominantly rainfed farming systems of the developing world. Recently compiled guidelines introduce the concepts behind water harvesting and propose a harmonised classification system, followed by an assessment of suitability, adoption and up-scaling of practices. Case studies go from large-scale floodwater spreading that make alluvial plains cultivable, to systems that boost cereal production in small farms, as well as practices that collect and store water from household compounds. Once contextualized and set in appropriate institutional frameworks, they can form part of an overall adaptation strategy for land users. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the new EU CASCADE project.
Resumo:
Previous studies have shown that collective property rights offer higher flexibility than individual property and improve sustainable community-based forest management. Our case study, carried out in the Beni department of Bolivia, does not contradict this assertion, but shows that collective rights have been granted in areas where ecological contexts and market facilities were less favourable to intensive land use. Previous experiences suggest investigating political processes in order to understand the criteria according to which access rights were distributed. Based on remote sensing and on a multi-level land governance framework, our research confirms that land placed under collective rights, compared to individual property, is less affected by deforestation among Andean settlements. However, analysis of the historical process of land distribution in the area shows that the distribution of property rights is the result of a political process based on economic, spatial, and environmental strategies that are defined by multiple stakeholders. Collective titles were established in the more remote areas and distributed to communities with lower productive potentialities. Land rights are thus a secondary factor of forest cover change which results from diverse political compromises based on population distribution, accessibility, environmental perceptions, and expected production or extraction incomes.