82 resultados para George, Stefan Anton, 1868-1933.
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
Laser-assisted killing of gold nanoparticle targeted macrophages was investigated. Using pressure transient detection, flash photography and transmission electron microscopy (TEM) imaging, we studied the mechanism of single cell damage by vapor bubble formation around gold nanospheres induced by nanosecond laser pulses. The influence of the number of irradiating laser pulses and of particle size and concentration on the threshold for acute cell damage was determined. While the single pulse damage threshold is independent of the particle size, the threshold decreases with increasing particle size when using trains of pulses. The dependence of the cell damage threshold on the nanoparticle concentration during incubation reveals that particle accumulation and distribution inside the cell plays a key role in tissue imaging or cell damaging.
Resumo:
Mucormycosis is an emerging cause of infectious morbidity and mortality in patients with hematologic malignancies. However, there are no recommendations to guide diagnosis and management. The European Conference on Infections in Leukemia assigned experts in hematology and infectious diseases to develop evidence-based recommendations for the diagnosis and treatment of mucormycosis. The guidelines were developed using the evidence criteria set forth by the American Infectious Diseases Society and the key recommendations are summarized here. In the absence of validated biomarkers, the diagnosis of mucormycosis relies on histology and/or detection of the organism by culture from involved sites with identification of the isolate at the species level (no grading). Antifungal chemotherapy, control of the underlying predisposing condition, and surgery are the cornerstones of management (level A II). Options for first-line chemotherapy of mucormycosis include liposomal amphotericin B and amphotericin B lipid complex (level B II). Posaconazole and combination therapy of liposomal amphotericin B or amphotericin B lipid complex with caspofungin are the options for second line-treatment (level B II). Surgery is recommended for rhinocerebral and skin and soft tissue disease (level A II). Reversal of underlying risk factors (diabetes control, reversal of neutropenia, discontinuation/taper of glucocorticosteroids, reduction of immunosuppressants, discontinuation of deferroxamine) is important in the treatment of mucormycosis (level A II). The duration of antifungal chemotherapy is not defined but guided by the resolution of all associated symptoms and findings (no grading). Maintenance therapy/secondary prophylaxis must be considered in persistently immunocompromised patients (no grading).