106 resultados para Genome-Wide Association
Resumo:
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.
Resumo:
Childhood wheezing and asthma vary greatly in clinical presentation and time course. The extent to which phenotypic variation reflects heterogeneity in disease pathways is unclear.
Resumo:
Pseudogenes (Ψs), including processed and non-processed Ψs, are ubiquitous genetic elements derived from originally functional genes in all studied genomes within the three kingdoms of life. However, systematic surveys of non-processed Ψs utilizing genomic information from multiple samples within a species are still rare. Here a systematic comparative analysis was conducted of Ψs within 80 fully re-sequenced Arabidopsis thaliana accessions, and 7546 genes, representing ~28% of the genomic annotated open reading frames (ORFs), were found with disruptive mutations in at least one accession. The distribution of these Ψs on chromosomes showed a significantly negative correlation between Ψs/ORFs and their local gene densities, suggesting a higher proportion of Ψs in gene desert regions, e.g. near centromeres. On the other hand, compared with the non-Ψ loci, even the intact coding sequences (CDSs) in the Ψ loci were found to have shorter CDS length, fewer exon number and lower GC content. In addition, a significant functional bias against the null hypothesis was detected in the Ψs mainly involved in responses to environmental stimuli and biotic stress as reported, suggesting that they are likely important for adaptive evolution to rapidly changing environments by pseudogenization to accumulate successive mutations.
Resumo:
We report the identification of quantitative trait loci (QTL) affecting carcass composition, carcass length, fat deposition and lean meat content using a genome scan across 462 animals from a combined intercross and backcross between Hampshire and Landrace pigs. Data were analysed using multiple linear regression fitting additive and dominance effects. This model was compared with a model including a parent-of-origin effect to spot evidence of imprinting. Several precisely defined muscle phenotypes were measured in order to dissect body composition in more detail. Three significant QTL were detected in the study at the 1% genome-wide level, and twelve significant QTL were detected at the 5% genome-wide level. These QTL comprise loci affecting fat deposition and lean meat content on SSC1, 4, 9, 10, 13 and 16, a locus on SSC2 affecting the ratio between weight of meat and bone in back and weight of meat and bone in ham and two loci affecting carcass length on SSC12 and 17. The well-defined phenotypes in this study enabled us to detect QTL for sizes of individual muscles and to obtain information of relevance for the description of the complexity underlying other carcass traits.
Resumo:
A genome-wide scan was performed to detect quantitative trait loci (QTLs) for osteochondrosis (OC) and osteochondrosis dissecans (OCD) in horses. The marker set comprised 260 microsatellites. We collected data from 211 Hanoverian warmblood horses consisting of 14 paternal half-sib families. Traits used were OC (fetlock and/or hock joints affected), OCD (fetlock and/or hock joints affected), fetlock OC, fetlock OCD, hock OC, and hock OCD. The first genome scan included 172 microsatellite markers. In a second step 88 additional markers were chosen to refine putative QTLs found in the first scan. Genome-wide significant QTLs were located on equine chromosomes 2, 4, 5, and 16. QTLs for fetlock OC and hock OC partly overlapped on the same chromosomes, indicating that these traits may be genetically related. QTLs reached the chromosome-wide significance level on eight different equine chromosomes: 2, 3, 4, 5, 15, 16, 19, and 21. This whole-genome scan was a first step toward the identification of candidate genome regions harboring genes responsible for equine OC. Further investigations are necessary to refine the map positions of the QTLs already identified for OC.
Resumo:
Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02-1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72-1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed.
Resumo:
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.
Resumo:
During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.
Resumo:
As part of the global sheep Hapmap project, 24 individuals from each of seven indigenous Swiss sheep breeds (Bundner Oberländer sheep (BOS), Engadine Red sheep (ERS), Swiss Black-Brown Mountain sheep (SBS), Swiss Mirror sheep (SMS), Swiss White Alpine (SWA) sheep, Valais Blacknose sheep (VBS) and Valais Red sheep (VRS)), were genotyped using Illumina’s Ovine SNP50 BeadChip. In total, 167 animals were subjected to a detailed analysis for genetic diversity using 45 193 informative single nucleotide polymorphisms. The results of the phylogenetic analyses supported the known proximity between populations such as VBS and VRS or SMS and SWA. Average genomic relatedness within a breed was found to be 12 percent (BOS), 5 percent (ERS), 9 percent (SBS), 10 percent (SMS), 9 percent (SWA), 12 percent (VBS) and 20 percent (VRS). Furthermore, genomic relationships between breeds were found for single individuals from SWA and SMS, VRS and VBS as well as VRS and BOS. In addition, seven out of 40 indicated parent–offspring pairs could not be confirmed. These results were further supported by results from the genome-wide population cluster analysis. This study provides a better understanding of fine-scale population structures within and between Swiss sheep breeds. This relevant information will help to increase the conservation activities of the local Swiss sheep breeds.
Resumo:
BACKGROUND The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. RESULTS As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. CONCLUSION This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.
Resumo:
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.
Resumo:
Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures.