44 resultados para Gas exchange process
Resumo:
Severe acute respiratory failure of varying etiology may require the temporary use of artificial gas exchange devices. So far, extracorporeal membrane oxygenation and extracorporeal carbon dioxide removal have been used successfully for this purpose. A totally implantable intravascular oxygenator (IVOX) recently became available. The authors have used IVOX in three patients who presented with severe respiratory failure secondary to pneumonia (n = 2) and post-traumatic adult respiratory distress syndrome (n = 1). At the time of implantation, all patients had hypoxemia (PaO2 less than 60) despite a 100% inspired oxygen concentration and forced mechanical ventilation. The duration of IVOX therapy ranged from 12 to 71 hr. All patients initially showed improvement in arterial oxygenation, allowing for moderate reduction of ventilator therapy after several hours. In one patient the pulmonary status deteriorated further, and she died from multiple organ failure despite IVOX therapy. One patient could be stabilized but died from other causes. The third patient is a long-term survivor 18 months after IVOX therapy. Gas transfer capabilities of IVOX are limited when compared to extracorporeal membrane oxygenation, and this may restrict its clinical applicability in cases of severe adult respiratory distress syndrome. However, IVOX may be used successfully in selected patients with less severe respiratory failure.
Resumo:
Extracorporeal membrane oxygenation (ECMO) was used to achieve temporary artificial support in cardiac and pulmonary function in 22 patients from 1987 to September 1990. Standard indications were postcardiotomy cardiogenic shock (n = 4), neonatal (n = 1) and adult respiratory distress syndrome (n = 4). ECMO was also used for extended indications, such as graft failure following heart (n = 11) or lung transplantation (n = 2). In six of these cases ECMO was instituted as a bridge device to subsequent retransplantation of either the heart (n = 4) or one lung (n = 2). One out of nine patients supported by ECMO for standard indications, and two out of 13 patients supported for extended indications are long-term survivors. This series illustrates the results with ECMO in emergency situations, in patients under immunosuppressive protocols, or in patients with advanced lung failure requiring almost complete artificial gas exchange. In such complex situations, ECMO does provide stabilization until additional therapeutic measures are in effect. ECMO cannot be recommended for postoperative cardiogenic shock but short-term ECMO support is an accepted method in most cases with graft failure or pulmonary failure or other origin.
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.
Resumo:
BACKGROUND: The question whether patients suffering from end-stage emphysema who are candidates for lung transplantation should be treated with a single lung or with a double lung transplantation is still unanswered. METHODS: We reviewed 24 consecutive lung transplant procedures, comparing the results of 6 patients with an unilateral and 17 with a bilateral transplantation. PATIENTS AND RESULTS: After bilateral transplantation the patients showed a trend towards better blood gas exchange with shorter time on ventilator and intensive care compared patients after unilateral procedure. Three-year-actuarial survival was higher in the group after bilateral transplantation (83% versus 67%). There was a continuous improvement in pulmonary function in both groups during the first months after transplantation. Vital capacity and forced exspiratory ventilation therapies during the first second were significantly higher in the bilateral transplant group. CONCLUSION: Both unilateral and bilateral transplantation are feasible for patients with end-stage emphysema. Bilateral transplantation results in better pulmonary reserve capacity and faster rehabilitation.
Resumo:
BACKGROUND: Surfactant protein type B (SPB) is needed for alveolar gas exchange. SPB is increased in the plasma of patients with heart failure (HF), with a concentration that is higher when HF severity is highest. The aim of this study was to evaluate the relationship between plasma SPB and both alveolar-capillary diffusion at rest and ventilation versus carbon dioxide production during exercise. METHODS AND RESULTS: Eighty patients with chronic HF and 20 healthy controls were evaluated consecutively, but the required quality for procedures was only reached by 71 patients with HF and 19 healthy controls. Each subject underwent pulmonary function measurements, including lung diffusion for carbon monoxide and membrane diffusion capacity, and maximal cardiopulmonary exercise test. Plasma SPB was measured by immunoblotting. In patients with HF, SPB values were higher (4.5 [11.1] versus 1.6 [2.9], P=0.0006, median and 25th to 75th interquartile), whereas lung diffusion for carbon monoxide (19.7+/-4.5 versus 24.6+/-6.8 mL/mm Hg per min, P<0.0001, mean+/-SD) and membrane diffusion capacity (28.9+/-7.4 versus 38.7+/-14.8, P<0.0001) were lower. Peak oxygen consumption and ventilation/carbon dioxide production slope were 16.2+/-4.3 versus 26.8+/-6.2 mL/kg per min (P<0.0001) and 29.7+/-5.9 and 24.5+/-3.2 (P<0.0001) in HF and controls, respectively. In the HF population, univariate analysis showed a significant relationship between plasma SPB and lung diffusion for carbon monoxide, membrane diffusion capacity, peak oxygen consumption, and ventilation/carbon dioxide production slope (P<0.0001 for all). On multivariable logistic regression analysis, membrane diffusion capacity (beta, -0.54; SE, 0.018; P<0.0001), peak oxygen consumption (beta, -0.53; SE, 0.036; P=0.004), and ventilation/carbon dioxide production slope (beta, 0.25; SE, 0.026; P=0.034) were independently associated with SPB. CONCLUSIONS: Circulating plasma SPB levels are related to alveolar gas diffusion, overall exercise performance, and efficiency of ventilation showing a link between alveolar-capillary barrier damage, gas exchange abnormalities, and exercise performance in HF.
Resumo:
In addition to plasma metabolites and hormones participating as humoral signals in the control of feed intake, oxidative metabolic processes in peripheral organs also generate signals to terminate feeding. Although the degree of oxidation over longer periods is relatively constant, recent work suggests that the periprandial pattern of fuel oxidation is involved in regulating feeding behavior in the bovine. However, the association between periprandial oxidative metabolism and feed intake of dairy cows has not yet been studied. Therefore, the aim of this study was to elucidate possible associations existing between single feed intake events and whole-body net fat and net carbohydrate oxidation as well as their relation to plasma metabolite concentrations. To this end, 4 late-lactating cows equipped with jugular catheters were kept in respiratory chambers with continuous and simultaneous recording of gas exchange and feed intake. Animals were fed ad libitum (AL) for 24h and then feed restricted (RE) to 50% of the previous AL intake for a further 24h. Blood samples were collected hourly to analyze β-hydroxybutyrate (BHBA), glucose, nonesterified fatty acids (NEFA), insulin, and acylated ghrelin concentrations. Cross-correlation analysis revealed an offset ranging between 30 and 42 min between the maximum of a feed intake event and the lowest level of postprandial net fat oxidation (FOX(net)) and the maximum level of postprandial net carbohydrate oxidation (COX(net)), respectively. During the AL period, FOX(net) did not increase above -0.2g/min, whereas COX(net) did not decrease below 6g/min before the start of the next feed intake event. A strong inverse cross-correlation was obtained between COX(net) and plasma glucose concentration. Direct cross-correlations were observed between COXnet and insulin, between heat production and BHBA, between insulin and glucose, and between BHBA and ghrelin. We found no cross-correlation between FOX(net) and NEFA. During RE, FOX(net) increased with an exponential slope, exceeded the threshold of -0.2g/min as indicated by increasing plasma NEFA concentrations, and approached a maximum rate of 0.1g/min, whereas COX(net) decayed in an exponential manner, approaching a minimal COX(net) rate of about 2.5 g/min in all cows. Our novel findings suggest that, in late-lactating cows, postprandial increases in metabolic oxidative processes seem to signal suppression of feed intake, whereas preprandially an accelerated FOX(net) rate and a decelerated COX(net) rate initiate feed intake.
Resumo:
BACKGROUND The use of reduced-size adult lung transplants could help solve the profound pediatric donor lung shortage. However, adequate long-term function of the mature grafts requires growth in proportion to the recipient's development. METHODS Mature left lower lobes from adult mini-pigs (age: 7 months; mean body weight: 30 kg) were transplanted into 14-week-old piglets (mean body weight: 15 kg). By the end of the 14-week holding period, lungs of the recipients (n = 4) were harvested. After volumetric measurements, the lung morphology was studied using light microscopy, scanning, and transmission electron microscopy. Changes of alveolar airspace volume were determined using a computer aided image analysis system. Comparisons were made to age- and weight-matched controls. RESULTS Volumetric studies showed no significant differences (p = 0.49) between the specific volume (mL/kg body weight) of lobar grafts and left lower lobes of adult controls. Morphologic studies showed marked structural differences between the grafts and the right native lungs of the recipients, with increased average alveolar diameter of the grafts. On light microscopy and scanning electron microscopy, alveoli appeared dilated and rounded compared to the normal polygonal shape in the controls. The computer generated semi-quantitative data of relative alveolar airspace volume tended to be higher in transplanted lobes. CONCLUSIONS The mature pulmonary lobar grafts have filled the growing left hemithorax of the developing recipient. Emphysema-like alterations of the grafts were observed without evidence of alveolar growth in the mature lobar transplants. Thus, it can be questioned whether mature pulmonary grafts can guarantee sufficient long-term gas exchange in growing recipients.
Resumo:
Grassland is an important ecosystem type which is not only used agriculturally, but also covers sites which cannot be used for other purposes, e.g. in very steep locations or above timberlines. Prolonged summer droughts in the mid-term future, as are predicted for Central Europe, are expected to have a major impact on such ecosystems. To address this topic, rainfall exclusion via shelters was performed on three grassland sites at different altitudes (393, 982 and 1978 m above sea level) in Switzerland. Diurnal drought treatment effects were studied at each study site on a completely sunny day towards the end of an 8–10 week shelter period. Ecophysiological parameters including gas exchange (An, gs and intrinsic WUE) and chlorophyll a fluorescence (Fv/Fm, ΦPSII and NPQ) were considered for several species. The lowland and the Alpine field site were more strongly affected by soil drought than the pre-Alpine site. At all sites, grasses showed different patterns of reductions in stomatal conductance under soil drought compared to legumes and forbs. In addition, grasses were significantly more affected by reductions in assimilation rates at all sites. Time courses of reductions in assimilation rates relative to controls differed between species at the Alpine site, as some species showed reduced assimilation rates at this site in the early morning. Thus, similar rainfall exclusion treatments can trigger different reactions in various species at different sites, which might not become obvious during mere midday measurements. Overall, results suggest strong impacts of prolonged summer drought on grassland net photosynthesis especially at the Alpine site and, within sites, for grasses
Resumo:
Roughly 90% of the gas-exchange surface is formed by alveolarization of the lungs. To the best of our knowledge, the formation of new alveoli has been followed in rats only by means of morphological description or interpretation of semiquantitative data until now. Therefore, we estimated the number of alveoli in rat lungs between postnatal days 4 and 60 by unambiguously counting the alveolar openings. We observed a bulk formation of new alveoli between days 4 and 21 (17.4 times increase from 0.8 to 14.3 millions) and a second phase of continued alveolarization between days 21 and 60 (1.3 times increase to 19.3 million). The (number weighted) mean volume of the alveoli decreases during the phase of bulk alveolarization from ∼593,000 μm(3) at day 4 to ∼141,000 μm(3) at day 21, but increases again to ∼298,000 μm(3) at day 60. We conclude that the "bulk alveolarization" correlates with the mechanism of classical alveolarization (alveolarization before the microvascular maturation is completed) and that the "continued alveolarization" follows three proposed mechanisms of late alveolarization (alveolarization after microvascular maturation). The biphasic pattern is more evident for the increase in alveolar number than for the formation of new alveolar septa (estimated as the length of the free septal edge). Furthermore, a striking negative correlation between the estimated alveolar size and published data on retention of nanoparticles was detected.
Resumo:
We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution to investigate interaction and binding of α-tochoperol transfer protein (α-TTP) to phosphatidylinositol phosphate lipids (PIPs). Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP-PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein/ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED) phenotypes. Specifically, R221 is main residue responsible for the stabilization of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.
Resumo:
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat-induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat-dependent alterations of thylakoid-associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western-blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non-photochemical fluorescence quenching. Recovery experiments showed that heat-dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat-induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat-dependent reduction of the Rubisco activation state.
Resumo:
Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a ’control valve’ on ocean–atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air–sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean’s ’organic carbon pump’ has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.
Resumo:
The 15N ratio of nitrogen oxides (NOx) emitted from vehicles, measured in the air adjacent to a highway in the Swiss Middle Land, was very high [δ15N(NO2) = +5.7‰]. This high 15N abundance was used to estimate long-term NO2 dry deposition into a forest ecosystem by measuring δ15N in the needles and the soil of potted and autochthonous spruce trees [Picea abies (L.) Karst] exposed to NO2 in a transect orthogonal to the highway. δ15N in the current-year needles of potted trees was 2.0‰ higher than that of the control after 4 months of exposure close to the highway, suggesting a 25% contribution to the N-nutrition of these needles. Needle fall into the pots was prevented by grids placed above the soil, while the continuous decomposition of needle litter below the autochthonous trees over previous years has increased δ15N values in the soil, resulting in parallel gradients of δ15N in soil and needles with distance from the highway. Estimates of NO2 uptake into needles obtained from the δ15N data were significantly correlated with the inputs calculated with a shoot gas exchange model based on a parameterisation widely used in deposition modelling. Therefore, we provide an indication of estimated N inputs to forest ecosystems via dry deposition of NO2 at the receptor level under field conditions.
Resumo:
Modern policy-making is increasingly influenced by different types of uncertainty. Political actors are supposed to behave differently under the context of uncertainty then in “usual” decision-making processes. Actors exchange information in order to convince other actors and decision-makers, to coordinate their lobbying activities and form coalitions, and to get information and learn on the substantive issue. The literature suggests that preference similarity, social trust, perceived power and functional interdependence are particularly important drivers of information exchange. We assume that social trust as well as being connected to scientific actors is more important under uncertainty than in a setting with less uncertainty. To investigate information exchange under uncertainty analyze the case of unconventional shale gas development in the UK from 2008 till 2014. Our study will rely on statistical analyses of survey data on a diverse set of actors dealing with shale gas development and regulation in the UK.