85 resultados para GERM-CELL TUMORS
Resumo:
Cutaneous T-cell lymphomas (CTCLs) are malignancies of skin-homing lymphoid cells, which have so far not been investigated thoroughly for common oncogenic mutations. We screened 90 biopsy specimens from CTCL patients (41 mycosis fungoides, 36 Sézary syndrome, and 13 non-mycosis fungoides/Sézary syndrome CTCL) for somatic mutations using OncoMap technology. We detected oncogenic mutations for the RAS pathway in 4 of 90 samples. One mycosis fungoides and one pleomorphic CTCL harbored a KRAS(G13D) mutation; one Sézary syndrome and one CD30(+) CTCL harbored a NRAS(Q61K) amino acid change. All mutations were found in stage IV patients (4 of 42) who showed significantly decreased overall survival compared with stage IV patients without mutations (P = .04). In addition, we detected a NRAS(Q61K) mutation in the CTCL cell line Hut78. Knockdown of NRAS by siRNA induced apoptosis in mutant Hut78 cells but not in CTCL cell lines lacking RAS mutations. The NRAS(Q61K) mutation sensitized Hut78 cells toward growth inhibition by the MEK inhibitors U0126, AZD6244, and PD0325901. Furthermore, we found that MEK inhibitors exclusively induce apoptosis in Hut78 cells. Taken together, we conclude that RAS mutations are rare events at a late stage of CTCL, and our preclinical results suggest that such late-stage patients profit from MEK inhibitors.
Resumo:
Malignant mesodermal tumors of the uterus are an inhomogenous group of uterine malignancies with different pathogenesis, clinical presentation and prognosis. These rare tumors represent approximately 1 % of all uterine malignancies. The aggressive carcinosarcomas or mixed muellerian tumors are defined by mixed malignant epithelial and malignant mesodermal histopathology and are of the same precursor cell origin like endometrial cancer. Thus, carcinosarcomas were reclassified by the FIGO as an aggressive type of endometrial cancer and treated like type II endometrial cancer. Adenosarcomas are also mixed tumors with benign epithelial proliferation and malignant mesodermal cell growth, have a good prognosis and represent less than 5 % of all mesodermal uterine malignancies. Besides carcinosarcomas, the pure mesodermal leiomyosarcomas are the most common mesodermal malignancies. Patients with leiomyosarcamos are usually perimenopausal, and although more than half of the patients present with symptoms, diagnosis occurs incidentally in most cases in final histopathologic workup of an excised putative myoma or uterus. Adequate anamnesis, gynecologic examination and careful imaging by transvaginal ultrasound in the preoperative setting might hint to correct differential diagnosis in many cases. Overall the prognosis of uterine leiomyomas is poor. Malignancies of the endometrial stroma are very rare and divided in two subgroups, the mostly estrogen receptor positive endometrial stromal sarcoma, which occur preferably in premenopausal women and show a favorable prognosis, and the very aggressive undifferentiated endometrial sarcomas. The more rare undifferentiated endometrial sarcomas occur in postmenopausal women and most patients die in the first two years after diagnosis. Risk stratification of preoperative differential diagnosis requires improvements and the correct histopathologic workup of mesodermal uterine malignancies is still a challenge for pathologists.
Resumo:
Many surgeons treat giant cell tumor of bone (GCT) with intralesional curettage. Wide resection is reserved for extensive bone destruction where joint preservation is impossible or when expendable sites (eg, fibular head) are affected. Adjuvants such as polymethylmethacrylate and phenol have been recommended to reduce the risk of local recurrence after intralesional surgery. However, the best treatment of these tumors and risk factors for recurrence remain controversial.
Resumo:
Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.
Resumo:
Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.
Resumo:
Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue-derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 10(7) cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%-60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.
Resumo:
Lymph node involvement is prognostically the most determinant clinical factor for patients with head and neck squamous cell carcinomas (HNSCCs). Ultrasound of the neck and fine-needle aspiration (FNA) cytology is one of the first diagnostic procedures and the most accurate diagnostic staging tool for the neck. Patients with HPV-positive oropharyngeal carcinomas (OPSCC) show a significantly better prognosis when compared with HPV-negative OPSCC. P16 overexpression is accepted as surrogate marker for HPV-positive in OPSCC. These HPV/p16-positive OPSCC are localized either in the palatal tonsils or the base of tongue and frequently present with lymph node metastases. We analyzed the correlation and reliability of p16 expression of the FNA of the lymph node metastasis with the immunohistochemical expression of p16 of the same lymph node metastasis and its corresponding primary tumor, as it could be of importance for determining the localization and different prognosis of the primary tumor. 54 HNSCC patients were evaluated, p16 expression of the primary tumors and their lymph node metastases correlated precisely. In 25 of the 54 HNSCC patients, a FNA of the lymph node metastases was taken before the treatment. The positive cytological and immunohistochemical p16 staining correlated exactly. Of the 17 histologically p16-negative lymph node metastases 15 FNA were p16-negative, whereas two samples were p16-positive. In our view, a cytological p16 analysis of cervical lymph node metastasis can facilitate the correct localization of the primary tumor and discriminate reliably HPV-positive OPSCC from HPV-negative HNSCC with their significantly diverse prognosis.
Resumo:
Microbeam radiation therapy (MRT), a preclinical form of radiosurgery, uses spatially fractionated micrometre-wide synchrotron-generated X-ray beams. As MRT alone is predominantly palliative for animal tumors, the effects of the combination of MRT and a newly synthesized chemotherapeutic agent JAI-51 on 9L gliosarcomas have been evaluated. Fourteen days (D14) after implantation (D0), intracerebral 9LGS-bearing rats received either MRT, JAI-51 or both treatments. JAI-51, alone or immediately after MRT, was administered three times per week. Animals were kept up to ∼20 weeks after irradiation or sacrificed at D16 or D28 after treatment for cell cycle analysis. MRT plus JAI-51 increased significantly the lifespan compared with MRT alone (p = 0.0367). JAI-51 treatment alone had no effect on rat survival. MRT alone or associated with JAI-51 induced a cell cycle blockade in G2/M (p < 0.01) while the combined treatment also reduced the proportion of G0/G1 cells. At D28 after irradiation, MRT and MRT/JAI-51 had a smaller cell blockade effect in the G2/M phase owing to a significant increase in tumor cell death rate (<2c) and a proportional increase of endoreplicative cells (>8c). The combination of MRT and JAI-51 increases the survival of 9LGS-bearing rats by inducing endoreduplication of DNA and tumor cell death; further, it slowed the onset of tumor growth resumption two weeks after treatment.
Resumo:
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.
Resumo:
BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.
Resumo:
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Resumo:
Mouse cell lines were immortalized by introduction of specific immortalizing genes. Embryonic and adult animals and an embryonal stem cell line were used as a source of primary cells. The immortalizing genes were either introduced by DNA transfection or by ecotropic retrovirus transduction. Fibroblasts were obtained by expression of SV40 virus large T antigen (TAg). The properties of the resulting fibroblast cell lines were reproducible, independent of the donor mouse strains employed and the cells showed no transformed properties in vitro and did not form tumors in vivo. Endothelial cell lines were generated by Polyoma virus middle T antigen expression in primary embryonal cells. These cell lines consistently expressed relevant endothelial cell surface markers. Since the expression of the immortalizing genes was expected to strongly influence the cellular characteristics fibroblastoid cells were reversibly immortalized by using a vector that allows conditional expression of the TAg. Under inducing conditions, these cells exhibited properties that were highly similar to the properties of constitutively immortalized cells. In the absence of TAg expression, cell proliferation stops. Cell growth is resumed when TAg expression is restored. Gene expression profiling indicates that TAg influences the expression levels of more than 1000 genes that are involved in diverse cellular processes. The data show that conditionally immortalized cell lines have several advantageous properties over constitutively immortalized cells.
Resumo:
The effect of cancer immunotherapy on the endogenous immune response against tumors is largely unknown. Therefore, we studied immune responses against murine tumors expressing the glycoprotein (GP) and/or nucleoprotein of lymphocytic choriomeningitis virus (LCMV) with or without adoptive T-cell therapy. In nontreated animals, CTLs specific for different epitopes as well as LCMV-GP-specific antibodies contributed to tumor surveillance. Adoptive immunotherapy with monoclonal CTLs specific for LCMV-gp33 impaired the endogenous tumor-specific antibody and CTL response by targeting antigen cross-presenting cells. As a consequence and in contrast to expectations, immunotherapy enhanced tumor growth. Thus, for certain immunogenic tumors, a reduction of tumor-specific B- and T-cell responses and enhanced tumor growth may be an unwanted consequence of adoptive immunotherapy.
Resumo:
Natural killer (NK) cells are cytotoxic cells that play a critical role in the innate immune response against infections and tumors. In the elderly, the cytotoxic function of NK cells is often compromised. Telomeres progressively shorten with each cell division and with age in most somatic cells eventually leading to chromosomal instability and cellular senescence. We studied the telomere length in NK cell subsets isolated from peripheral blood using "flow FISH," a method in which the hybridization of telomere probe in cells of interest is measured relative to internal controls in the same tube. We found that the average telomere length in human NK cells decreased with age as was previously found for human T lymphocytes. Separation of adult NK cells based on CD56 and CD16 expression revealed that the telomere length was significantly shorter in CD56(dim)CD16(+) (mature) NK cells compared to CD56(bright)CD16(-) (immature) NK cells from the same donor. Furthermore, sorting of NK cells based on expression of activation markers, such as NKG2D and LFA-1, revealed that NK cells expressing these markers have significantly shorter telomeres. Telomere fluorescence was very heterogeneous in NK cells expressing CD94, killer inhibitory receptor (KIR), NKG2A, or CD161. Our observations indicate that telomeric DNA in NK cells is lost with cell division and with age similar to what has been observed for most other hematopoietic cells. Telomere attrition in NK cells is a plausible cause for diminished NK cell function in the elderly.
Resumo:
Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.