43 resultados para GAG Phila7
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.
Resumo:
One Arabian and 5 Hungarian half-bred horses were used to study the macroscopic and microscopic survival of autologous osteochondral grafts in the weight-bearing surface of the medial femoral condyle (MFC). Grafts were harvested from the cranial surface of the medial femoral trochlea (MFT) under arthroscopic control. Three of them were transplanted into the weight-bearing surface of the contralateral MFC using an arthrotomy approach. Three months later this transplantation procedure was repeated on the opposite stifle joints in the same animals, but at that time transplantation was performed arthroscopically. Follow-up arthroscopy was carried out 12 months after the first operations, and biopsies were taken from both the recipient and the donor sites for histological examination. During follow-up arthroscopy, the transplanted areas looked congruent and smooth. Microscopically, the characteristics of hyaline cartilage were present in 5 out of the 10 biopsies examined; however, in the other half of biopsies glycosaminoglycan (GAG) loss and change in the architecture of the transplanted cartilage was observed. In a 16-year-old horse, all grafts broke during harvesting, and thus transplantation was not performed. No radiological signs of osteoarthritic changes were detected 9 to 12 months after the operations in the donor and recipient joints. Clinically, no lameness or effusion was present three months after the transplantations.
Resumo:
We analyzed brain tissue from 39 patients for the presence of proviral HIV-1 sequences, using the polymerase chain reaction (PCR) for the amplification of segments of the viral LTR and gag genes. A novel primer extension procedure allowed the detection of a single HIV-1 copy in 1 micrograms DNA. We detected proviral HIV-1 DNA in 16 of 25 brain samples from AIDS patients. Semiquantitative evaluation of the amplified DNAs indicated considerable variation in viral load. Highest levels of proviral DNA were present in brain samples from six patients with clinical evidence of HIV-associated cognitive/motor complex and the histopathologic correlate of HIV leukoencephalopathy or HIV encephalitis. An additional 11 brain samples contained smaller amounts of proviral DNA. In these patients, clinical data were inconclusive regarding the diagnosis of HIV-1 encephalopathy and histopathologically there was no evidence of HIV-1-induced tissue lesions. In nine of 25 seropositive patients with AIDS (36%), brain samples scored negative or did not contain an unequivocal signal indicating the presence of proviral DNA. HIV-1 sequences were not detected in any of 14 control brain samples from HIV-1 seronegative patients. Our data indicate that HIV-1 is present in the central nervous system of the majority (two thirds) of AIDS patients and that the highest levels of proviral DNA in brain tissue are associated with HIV encephalopathy.
Resumo:
The nervous system is frequently affected in patients with the acquired immune deficiency syndrome (AIDS). In addition to opportunistic CNS infections and cerebral lymphomas, approx. 20% of the patients develop HIV-associated encephalopathies. Two major histopathological manifestations are observed. HIV leukoencephalopathy (progressive diffuse leukoencephalopathy) is characterized by a diffuse loss of myelin in the deep white matter of the cerebral and cerebellar hemispheres, with scattered multinucleated giant cells and microglia but scarce or absent inflammatory reaction. HIV encephalitis (multinucleated giant cell encephalitis) is associated with accumulations of multinucleated giant cells, inflammatory reaction and often focal necroses. In some patients, both patterns may overlap. In order to identify the HIV genome in the CNS, brain tissue from 27 patients was analyzed for the presence of HIV gag sequences using the polymerase chain reaction (PCR) and primers encoding a 109 base pair segment of the gag gene. Amplification of HIV gag succeeded in all 5 patients with clinical and histopathological evidence for HIV encephalopathy but was negative in the 20 AIDS patients with opportunistic bacterial, parasitic and/or viral infections or with cerebral lymphomas. These results strongly suggest that the evolution of histopathologically recognizable HIV-encephalopathies closely correlates with the presence and/or tissue concentration of HIV. Since there were no cases with amplified HIV DNA in the absence of HIV-associated tissue lesions, we conclude that harboring and replication of HIV in the CNS rapidly causes corresponding clinical and morphological changes of HIV-associated encephalopathies. In two children with severe HIV encephalomyelitis, large amounts of HIV gag and env transcripts were detected in affected areas of the brain and spinal cord by in situ hybridization.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The presence and distribution of human immunodeficiency virus (HIV) were examined in the CNS of two children with severe HIV encephalitis and myelitis. Using polymerase chain reaction-mediated DNA amplification and subsequent Southern analysis, proviral HIV gag sequences were identified in brain tissue of both patients. In situ hybridization using antisense oligonucleotide probes revealed abundant HIV gag and env/nef RNAs selectively in areas with histopathological evidence for HIV-induced tissue damage. The spinal cord of one patient exhibited a striking subpial accumulation of HIV RNAs strongly suggestive of a liquorigenic spread of the infection. HIV RNAs were typically associated with cells of the monocyte/macrophage lineage, as shown by a combined immunohistochemical and in situ hybridization procedure. The present study supports the view that the pattern and distribution of HIV-induced brain lesions is largely determined by the extent of focal HIV replication within the CNS.
Resumo:
The incidence of HIV encephalopathies was determined in an ongoing consecutive autopsy study. Among 345 patients who died from AIDS in Switzerland during 1981-1990, 68 (19%) showed morphological evidence of HIV encephalopathy. Two major histopathological manifestations were observed. Progressive diffuse leukoencephalopathy (PDL) was present in 33 cases and is characterized by a diffuse loss of myelin staining in the deep white matter of the cerebral and cerebellar hemispheres, with scattered multinucleated giant cells but little or no inflammatory reaction. Multinucleated giant cell encephalitis (MGCE) was diagnosed in 32 cases; it's hallmarks are accumulations of multinucleated giant cells with prominent inflammatory reaction and focal necroses. In 3 patients both types of lesions overlapped. Brain tissue from 27 patients was analyzed for the presence of HIV gag sequences using the polymerase chain reaction (PCR) with primers encoding a 109 base pair segment of the viral gene. Amplification succeeded in all patients with clinical and histopathological evidence for HIV encephalopathy but was absent in AIDS patients with opportunistic bacterial, parasitic and/or viral infections. Potential mechanisms by which HIV exerts it's adverse effects on the human CNS are discussed.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.
Resumo:
Introduction Notochordal cells (NC) are shifted back into focus due to their apparent action of activating other disc cells via indirect release of yet unknown factors into the medium (conditioned medium = CM).1,2 Recent evidence confirms the results from the late 1990s.3,4 Here, we test porcine (p) NC cultured in 3D and the influence of adding serum or using serum-free medium onto the culture on NC cells and its stimulating effects for subsequent coculture with primary bovine (b) nucleus pulposus (bNPC) and annulus fibrous cells (bAFC). Materials and Methods Primary pNC, bNPC, and bAFC were isolated from porcine tails (< 6-12 months age) or bovine tails (∼1 year age), which were obtained from the food chain (N = 4 repeats) within 4 hours postmortem. All cells were seeded into 1.2% alginate, each with a density of 4 × 106/mL. NC were then either cultured for 7 days in serum free medium (SFM = Dulbecco modified eagle medium [DMEM] supplied with ITS+, 50 µg/mL vitamin C and nonessential amino acids) or DMEM + 10% fetal calf serum (FCS). CM was produced from NC collecting 4 mL SFM and keeping approximately 30 beads for 7 days. Then, a coculture was set up in SFM for 14 days using indirect cell-cell contact (culture insert, high density pore, 0.4 µm) using a 50:50% ratio5 of pNC:bNP or bAF, or by addition of CM, respectively. The cell activity, glycosaminoglycan per DNA (GAG/DNA) ratio, and real-time RT-PCR of IVD relevant genes were monitored. Mass spectrometry was performed on the SFM and the cocultured medium as well as the CM of the pNC to identify possible key cytokines to the stimulatory effects. Results The results for cell activity confirmed that pNC are highly responsive on the nutritional condition in the culture (K-W test, p = 0.048) after 7 days of coculture. bNPC and bAFC did not respond significantly different to coculture or addition of CM with respect to cell activity. However, GAG/DNA ratio of pNC was significantly upregulated if they were initially pre-exposed to FCS and in coculture with bNPC after 14 days, for both normoxia and hypoxia (K-W, p = 0.03). The bNPC were stimulated by both, 1:1 coculture with pNC but also by addition of CM only, which resulted in approximately 200% increased GAG/DNA values relative to the day 0 state. However, this doubling of the GAG/DNA ratio was nonsignificant after 14 days. The aggrecan/collagen type 2 ratio as quantified from real-time RT-PCR pointed to a beneficial state of the bNPC if cultured either in indirect coculture with pNC or by the addition of CM (Fig. 1). The mass spectrometric analysis of the CM revealed that there was connecting tissue growth factor present (CTGF) among the cytokine CLC11, a cytokine that has been found to be expressed in skeletal tissues including bone marrow and chondrocytes among other factors that might have immunoregulatory and cell proliferative functions.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
In order to detect a large spectrum of small ruminant lentiviruses, primers for PCR were chosen in conserved parts of the LTR and GAG genes of Icelandic Visna virus 1514 and of the POL gene of caprine arthritis-encephalitis virus. This set of primers was tested in six different caprine arthritis-encephalitis virus (CAEV)- and Maedi-Visna virus isolates of Dutch, American and Swiss origin. The LTR primers allowed the detection of the corresponding fragments of all isolates. The GAG primers allowed amplification of the corresponding fragments of all but the Swiss Maedi-Visna virus strain OLV. Using the POL primers, one Maedi-Visna- and two caprine arthritis-encephalitis virus strains were detected after one round of amplification. Sequencing of the GAG and POL amplification products and comparison to Icelandic Visna virus and CAEV strain CO revealed total heterogeneity of 38% for the GAG- and 28% for the POL fragment. The virus strains studied fall into two groups which are more closely related to one another than to Icelandic Visna virus.
Resumo:
Introduction Low back pain is often caused by a trauma causing disc herniation and /or disc degeneration. Although there are some promising approaches for nucleus pulposus repair, the inner tissue of the intervertebral disc (IVD) so far no treatment or repair is available for annulus fibrosus (AF) injuries. Here we aimed to develop a new method to seal and repair AF injuries by using a silk fleece composite and a genipin enhanced hydrogel. Methods Bovine (b) IVDs were harvested under aseptic conditions and kept in free swelling conditions for 24h in high-glucose DMEM containing 5% bovine serum for equilibration (1). A circular 2mm biopsy punch (Polymed Medical Center, Switzerland) was used to form a reproducible defect in the AF. For filling the defect and keeping the silk composite in place a human-derived fibrin gel (Baxter Tisseel, Switzerland) enhanced with 4.2mg/ml of the cross linker genipin (Wako Chemicals GmbH, Germany) was used. The silk composite consists of a mesh- and a membrane side (Spintec Engineering GmbH, Germany); the membrane is facing outwards to form a seal. bIVDs were cultured in vitro for 14 days either under dynamic load in a custom-built bioreactor under physiological conditions (0.2MPa load and ±2° torsion at 0.2Hz for 8h/day) or static diurnal load of 0.2MPa (2). At the end of culture discs were checked for seal failure, disc height, metabolic activity, cell death by necrosis (LDH assay), DNA content and glycosaminoglycan content. Results Silk composite maintained its position throughout the 14 days of culture under loaded conditions. Although repaired discs performed slightly lower in cell activity, DNA and GAG content were in the range of the control. Also LDH resulted in similar values compared to control discs (Fig 1). Height loss in repaired discs was in the same range as for static diurnal loaded control samples. For dynamically loaded samples the decrease was comparable to the injured, unrepaired discs. Fig 1 LDH of repaired discs compared to control disc after 24h in free swelling conditions for equilibration and first three loading cycles. Conclusions Silk-genipin-fibrin reinforced hydrogel is a promising approach to close AF defects as tested by two degree of freedom loading. In further experiments cytocompatibility of genipin has to be investigated. References 1. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. 2. Walser J, Ferguson SJ, Gantenbein-Ritter B. Design of a mechanical loading device to culture intact bovine caudal motional segments of the spine under twisting motion. In: Davies J, editors. Replacing animal models: a practical guide to creating and using biomimetic alternatives. Chichester, UK: John Wiley & Sons, Ltd.; 2012. p. 89-105. Acknowledgements This project is funded by the Gerbert Rüf Stiftung project # GRS-028/13 and the Swiss National Science Project SNF #310030_153411.
Resumo:
INTRODUCTION: Around 80% of people are affected by low back pain at least once in their life, often caused by trauma provoking intervertebral disc (IVD) herniation and/or IVD degeneration. Apart from some promising approaches for nucleus pulposus repair, so far no treatment or repair is available for the outer fibrous tissue, annulus fibrosus (AF). We aimed for sealing and repairing an AF injury in a bovine IVD organ culture model in vitro over 14 days under different loading conditions. For this purpose, a silk fleece composite from Bombyx mori silk was combined with genipin-enhanced fibrin hydrogel [1]. METHODS: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue, followed by cutting out the IVDs [2]. Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described. On the next day, injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35- 55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d. Complex loading was applied by a custom built 2 degree of freedom bioreactor [3]. After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy-proline) were determined. Finally, real-time qPCR of major IVD marker genes was performed. RESULTS: The silk seal closing the injury site could successfully withstand the forces of all three loading conditions with no misplacement over the two weeks’ culture. Nevertheless, disc height of the repaired discs did not significantly differ from the injured group. The disc phenotype could be maintained as demonstrated by biochemical analysis of gene expression, cell activity, DNA-, collagen- and GAG content. The silk itself was evaluated to be highly biocompatible for hMSC, as revealed by cytotoxicity assays. DISCUSSION & CONCLUSIONS: The silk can be considered a highly-elastic and biocompatible material for AF closure and the genipin-enhanced fibrin hydrogel has also good biomechanical properties. However, the cyto-compatibility of genipin seems rather poor and other hydrogels and/or cross-linkers should be looked into. REFERENCES: 1 C.C. Guterl et al. (2014) Characterization of Mechanics and Cytocompatibility of Fibrin Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules, Tissue Eng Part A 2 S.C. Chan, B. Gantenbein-Ritter (2012) Preparation of intact bovine tail intervertebral discs for organ culture, J Vis Exp 3 B Gantenbein et al. (2015) Organ Culture Bioreactors - Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy, Curr Stem Cell Res Ther [epub ahead of print] ACKNOWLEDGEMENTS: This project is supported by the Gebert Rüf Stiftung project # GRS-028/13.
Resumo:
Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.