60 resultados para Frontal disk
Resumo:
The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.
Resumo:
This study evaluated whether measurements on conventional frontal radiographs are comparable with measurements on cone beam computed tomography (CBCT)-constructed frontal cephalometric radiographs taken from dry human skulls. CBCT scans and conventional frontal cephalometric radiographs were made of 40 dry skulls. With I-Cat Vision((R)) software, a cephalometric radiograph was constructed from the CBCT scan. Standard cephalometric software was used to identify landmarks and calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs on all Images 5 times with a time-interval of 1 week. Intra-observer reliability was acceptable for all measurements. The reproducibility of the measurements on the frontal radiographs obtained from the CBCT scans was higher than those on conventional frontal radiographs. There is a statistically significant and clinically relevant difference between measurements on conventional and constructed frontal radiographs. There is a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements on frontal cephalometric radiographs constructed from CBCT scans, owing to different positioning of patients in both devices. Positioning of the patient in the CBCT device appears to be an important factor in cases where a 2D projection of the 3D scan is made.
Resumo:
OBJECTIVE: To compare severity of postoperative pain in dogs undergoing hemilaminectomy because of acute thoracolumbar intervertebral disk disease treated with a combination of conventional analgesics and electroacupuncture (EAP) or with conventional analgesics alone. DESIGN: Controlled clinical trial. ANIMALS: 15 dogs undergoing surgery because of acute thoracolumbar disk disease. PROCEDURES: Dogs were alternately assigned to treatment (conventional analgesics and adjunct EAP) and control (conventional analgesics alone) groups. Analgesic treatment was adjusted as necessary by the attending clinician, who was not aware of group assignment. Pain scores were assigned 1, 3, and 12 hours after surgery and every 12 hours thereafter for 72 hours by the same individual who performed acupuncture treatments. RESULTS: Total dose of fentanyl administered during the first 12 hours after surgery was significantly lower in the treatment group than in the control group, but dosages of analgesics administered from 12 through 72 hours after surgery did not differ between groups. Pain score was significantly lower in the treatment group than in the control group 36 hours after surgery, but did not differ significantly between groups at any other time. CONCLUSIONS AND CLINICAL RELEVANCE: Results provided equivocal evidence that adjunct EAP might provide some mild benefit in regard to severity of postoperative pain in dogs undergoing hemilaminectomy because of acute thoracolumbar intervertebral disk disease.
Resumo:
OBJECTIVES: (1) To assess spinal cord blood flow (SCBF) during surgical treatment of disk extrusion in dogs and (2) to investigate associations between SCBF, clinical signs, presurgical MRI images, and 24-hour surgical outcome. STUDY DESIGN: Cohort study. ANIMALS: Chondrodystrophic dogs with thoracolumbar disk extrusion (n=12). METHODS: Diagnosis was based on clinical signs and MRI findings, and confirmed at surgery. Regional SCBF was measured intraoperatively by laser-Doppler flowmetry before, immediately after surgical spinal cord decompression, and after 15 minutes of lavaging the lesion. Care was taken to ensure a standardized surgical procedure to minimize factors that could influence measurement readings. RESULTS: A significant increase in intraoperative SCBF was found in all dogs (Wilcoxon's signed-rank test; P=.05) immediately after spinal cord decompression and after 15 minutes. Changes in SCBF were not associated with duration of clinical signs; initial or 24-hour neurologic status; or degree of spinal cord compression assessed by MRI. CONCLUSION: SCBF increases immediately after spinal cord decompression in dogs with disk herniation; however, increased SCBF was not associated with a diminished 24-hour neurologic status. CLINICAL RELEVANCE: An increase in SCBF does not appear to be either associated with the degree of spinal cord compression or of a magnitude sufficient to outweigh the benefit of surgical decompression by resulting in clinically relevant changes in 24-hour outcome.
Resumo:
A 10-year-old Domestic Shorthair cat was admitted for chronic ambulatory paraparesis and a spinal malformation. The clinical examination revealed paraparesis accentuated on the left side. Thoracolumbar radiographs revealed a spinal malformation with a narrowed intervertebral space between L1 and L2, and a dorsal fusion at the level of L2-L3 with a common dorsal process. Magnetic resonance imaging (MRI) revealed an intervertebral disk herniation with a ventral compression of the spinal cord at the level of L1/2. A standard vertebral lateral corpectomy with a foraminotomy was performed with a good outcome.
Resumo:
OBJECTIVE To determine the prevalence of spinal cord compression subsequent to traumatic intervertebral disk (IVD) extrusion in dogs, characterize factors associated with spinal cord compression in dogs with traumatic IVD extrusion, and evaluate the outcomes of dogs with traumatic IVD extrusion with or without spinal cord compression. DESIGN Retrospective case series. ANIMALS 31 dogs with traumatic IVD extrusion. PROCEDURES Medical records and MRI findings were reviewed for dogs with a history of trauma to the spinal region. Dogs were included in the study if a neurologic examination and MRI were performed and there was a description of clinical signs and MRI findings including identification of the spinal cord segment affected by IVD extrusion, presence or absence of spinal cord compression, treatment, and outcome available for review. RESULTS 31 of 50 (62%) dogs had traumatic IVD extrusions without any other detectable vertebral lesions; 9 (29%) and 22 (71%) of those 31 dogs did and did not have spinal cord compression, respectively. Dogs with spinal cord compression were significantly older and more likely to be chondrodystrophic and have evidence of generalized IVD degeneration, compared with dogs without spinal cord compression. The outcome for dogs with spinal cord compression was similar to that for dogs without spinal cord compression. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated traumatic IVD extrusion was common and should be considered as a differential diagnosis for dogs with trauma to the spinal region, and spinal cord compression should be evaluated, especially in older or chondrodystrophic dogs.
Clinical and pathological analysis of epidural inflammation in intervertebral disk extrusion in dogs
Resumo:
BACKGROUND Little is known about the pathologic changes in the epidural space after intervertebral disk (IVD) extrusion in the dog. OBJECTIVES To analyze the pathology of the epidural inflammatory response, and to search for correlations between this process and clinical findings. METHODS Clinical data from 105 chondrodystrophic (CD) and nonchondrodystrophic (NCD) dogs with IVD extrusion were recorded. Epidural material from these dogs was examined histopathologically and immunohistochemically. Using statistical analysis, we searched for correlations between severity of epidural inflammation and various clinical and pathologic variables. RESULTS Most dogs exhibited an epidural inflammatory response, ranging from acute invasion of neutrophils to formation of chronic granulation tissue. The mononuclear inflammatory infiltrates consisted mostly of monocytes and macrophages and only few T and B cells. Surprisingly, chronic inflammatory patterns also were found in animals with an acute clinical history. Severity of the epidural inflammation correlated with degree of the epidural hemorrhage and nucleus pulposus calcification (P = .003 and .040), but not with age, chondrodystrophic phenotype, neurologic grade, back pain, pretreatment, or duration. The degree of inflammation was statistically (P = .021) inversely correlated with the ability to regain ambulation. CONCLUSION AND CLINICAL IMPORTANCE Epidural inflammation occurs in the majority of dogs with IVD extrusion and may develop long before the onset of clinical signs. Presence of calcified IVD material and hemorrhage in the epidural space may be the triggers of this lesion rather than an adaptive immune response to the nucleus pulposus as suggested in previous studies. Because epidural inflammation may affect outcome, further research is warranted.
Resumo:
The study investigated the influence of double-pulse transcranial magnetic stimulation (dTMS) on memory-guided saccade triggering. Double pulses with interstimulus intervals (ISIs) of 35, 50, 65 or 80 ms were applied over the right frontal eye field (FEF) and as control over the occipital cortex. A significant dTMS effect was found exclusively for contralateral saccades; latency of memory-guided saccades was reduced after FEF stimulation with an ISI of 50 ms compared to latency without stimulation. This effect proved to be specific for the ISI of 50 ms over the FEF because control stimulation with the same ISI over the occipital cortex had no significant effect on latency of memory-guided saccades. The results of our study showed that, by using an appropriate ISI, dTMS is able to facilitate contralateral saccade triggering by stimulating the FEF. This suggests that TMS interferes specifically with saccade triggering mechanisms, probably by acting on presaccadic neurons of the FEF.
Resumo:
The purpose of this study was to investigate the role of the fronto–striatal system for implicit task sequence learning. We tested performance of patients with compromised functioning of the fronto–striatal loops, that is, patients with Parkinson's disease and patients with lesions in the ventromedial or dorsolateral prefrontal cortex. We also tested amnesic patients with lesions either to the basal forebrain/orbitofrontal cortex or to thalamic/medio-temporal regions. We used a task sequence learning paradigm involving the presentation of a sequence of categorical binary-choice decision tasks. After several blocks of training, the sequence, hidden in the order of tasks, was replaced by a pseudo-random sequence. Learning (i.e., sensitivity to the ordering) was assessed by measuring whether this change disrupted performance. Although all the patients were able to perform the decision tasks quite easily, those with lesions to the fronto–striatal loops (i.e., patients with Parkinson's disease, with lesions in the ventromedial or dorsolateral prefrontal cortex and those amnesic patients with lesions to the basal forebrain/orbitofrontal cortex) did not show any evidence of implicit task sequence learning. In contrast, those amnesic patients with lesions to thalamic/medio-temporal regions showed intact sequence learning. Together, these results indicate that the integrity of the fronto–striatal system is a prerequisite for implicit task sequence learning.
Resumo:
In the antisaccade task, subjects are requested to suppress a reflexive saccade towards a visual target and to perform a saccade towards the opposite side. In addition, in order to reproduce an accurate saccadic amplitude, the visual saccade vector (i.e., the distance between a central fixation point and the peripheral target) must be exactly inverted from one visual hemifield to the other. Results from recent studies using a correlational approach (i.e., fMRI, MEG) suggest that not only the posterior parietal cortex (PPC) but also the frontal eye field (FEF) might play an important role in such a visual vector inversion process. In order to assess whether the FEF contributes to visual vector inversion, we applied an interference approach with continuous theta burst stimulation (cTBS) during a memory-guided antisaccade task. In 10 healthy subjects, one train of cTBS was applied over the right FEF prior to a memory-guided antisaccade task. In comparison to the performance without stimulation or with sham stimulation, cTBS over the right FEF induced a hypometric gain for rightward but not leftward antisaccades. These results obtained with an interference approach confirm that the FEF is also involved in the process of visual vector inversion.
Resumo:
This study investigated the roles of the right and left dorsolateral prefrontal (rDLPFC, lDLPFC) and the medial frontal cortex (MFC) in executive functioning using a theta burst transcranial magnetic stimulation (TMS) approach. Healthy subjects solved two visual search tasks: a number search task with low cognitive demands, and a number and letter search task with high cognitive demands. To observe how subjects solved the tasks, we assessed their behavior with and without TMS using eye movements when subjects were confronted with specific executive demands. To observe executive functions, we were particularly interested in TMS-induced changes in visual exploration strategies found to be associated with good or bad performance in a control condition without TMS stimulation. TMS left processing time unchanged in both tasks. Inhibition of the rDLPFC resulted in a decrease in anticipatory fixations in the number search task, i.e., a decrease in a good strategy in this low demand task. This was paired with a decrease in stimulus fixations. Together, these results point to a role of the rDLPFC in planning and response selection. Inhibition of the lDLPFC and the MFC resulted in an increase in anticipatory fixations in the number and letter search task, i.e., an increase in the application of a good strategy in this task. We interpret these results as a compensatory strategy to account for TMS-induced deficits in attentional switching when faced with high switching demands. After inhibition of the lDLPFC, an increase in regressive fixations was found in the number and letter search task. In the context of high working memory demands, this strategy appears to support TMS-induced working memory deficits. Combining an experimental TMS approach with the recording of eye movements proved sensitive to discrete decrements of executive functions and allows pinpointing the functional organization of the frontal lobes.
Resumo:
OBJECTIVE To evaluate the accuracy of neurologic examination versus magnetic resonance imaging (MRI) in localization of cervical disk herniation and evaluate the usefulness of withdrawal reflex testing in dogs. DESIGN Retrospective case series. ANIMALS 35 client-owned dogs with a single-level cervical disk herniation as determined via MRI. PROCEDURES 1 of 2 board-certified neurologists performed a complete neurologic examination in each dog. Clinical signs of a cervical lesion included evidence of neck pain and tetraparesis. The withdrawal reflex was used for neuroanatomic localization (C1-C5 or C6-T2). Agreement between results of neurologic and MRI examinations was determined. RESULTS Agreement between neurologic and MRI diagnoses was 65.8%. In 11 dogs in which the lesion was clinically localized to the C6-T2 segment on the basis of a decreased withdrawal reflex in the forelimbs, MRI revealed an isolated C1-C5 disk lesion. In 1 dog, in which the lesion was suspected to be at the C1-C5 level, MRI revealed a C6-T2 lesion. Cranial cervical lesions were significantly associated with an incorrect neurologic diagnosis regarding site of the lesion. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the withdrawal reflex in dogs with cervical disk herniation is not reliable for determining the affected site and that a decreased withdrawal reflex does not always indicate a lesion from C6 to T2.