55 resultados para Flaps (Airplanes)
Resumo:
OBJECTIVE: Lateral ridge augmentations are traditionally performed using autogenous bone grafts to support membranes for guided bone regeneration (GBR). The bone-harvesting procedure, however, is accompanied by considerable patient morbidity. AIM: The aim of the present study was to test whether or not resorbable membranes and bone substitutes will lead to successful horizontal ridge augmentation allowing implant installation under standard conditions. MATERIAL AND METHODS: Twelve patients in need of implant therapy participated in this study. They revealed bone deficits in the areas intended for implant placement. Soft tissue flaps were carefully raised and blocks or particles of deproteinized bovine bone mineral (DBBM) (Bio-Oss) were placed in the defect area. A collagenous membrane (Bio-Gide) was applied to cover the DBBM and was fixed to the surrounding bone using poly-lactic acid pins. The flaps were sutured to allow for healing by primary intention. RESULTS: All sites in the 12 patients healed uneventfully. No flap dehiscences and no exposures of membranes were observed. Nine to 10 months following augmentation surgery, flaps were raised in order to visualize the outcomes of the augmentation. An integration of the DBBM particles into the newly formed bone was consistently observed. Merely on the surface of the new bone, some pieces of the grafting material were only partly integrated into bone. However, these were not encapsulated by connective tissue but rather anchored into the newly regenerated bone. In all of the cases, but one, the bone volume following regeneration was adequate to place implants in a prosthetically ideal position and according to the standard protocol with complete bone coverage of the surface intended for osseointegration. Before the regenerative procedure, the average crestal bone width was 3.2 mm and to 6.9 mm at the time of implant placement. This difference was statistically significant (P<0.05, Wilcoxon's matched pairs signed-rank test). CONCLUSION: After a healing period of 9-10 months, the combination of DBBM and a collagen membrane is an effective treatment option for horizontal bone augmentation before implant placement.
Resumo:
Reconstruction of the anterior skull base and fronto-orbital framework following extensive tumor resection is both challenging and controversial. Dural defects are covered with multiple sheets of fascia lata that provide sufficient support and avoid herniation. Plating along the skull base is contraindicated. After resection of orbital walls, grafting is necessary if the periosteum or parts of the periorbital tissue had to be removed, to avoid enophthalmus or strabism. Free bone grafts exposed to the sinonasal or pharyngeal cavity are vulnerable to infection or necrosis: therefore, covering the grafts with vascularized tissue, such as the Bichat fat-pad or pedicled temporalis flaps, should reduce these complications. Alloplastic materials are indispensable in cranial defects, whereas microsurgical free tissue transfer is indicated in cases of orbital exenteration and skin defects. The authors review their experience and follow-up of 122 skull base reconstructions following extensive subcranial tumor resection. Most significant complications were pneumocranium in 4.9%, CSF leaks in 3.2%, and partial bone resorption in 8.1%.
Resumo:
BACKGROUND: The aim of this study was to evaluate postoperative oral functions of patients who had undergone total or subtotal (75%) glossectomy with preservation of the larynx for oral squamous cell carcinomas. METHODS: Speech intelligibility and swallowing capacity of 17 patients who had been treated between 1992 and 2002 were scored and classified using standard protocols 6 to 36 months postoperatively. The outcomes were finally rated as good, acceptable, or poor. RESULTS: The 4-year disease-specific survival rate was 64%. Speech intelligibility and swallowing capacity were satisfactory (acceptable or good) in 82.3%. Only 3 patients were still dependent on tube feeding. Good speech perceptibility did not always go together with normal diet tolerance, however. CONCLUSIONS: Our satisfactory results are attributable to the use of large, voluminous soft tissue flaps for reconstruction, and to the instigation of postoperative swallowing and speech therapy on a routine basis and at an early juncture. (c) 2008 Wiley Periodicals, Inc. Head Neck, 2008.
Resumo:
OBJECTIVES: The aim of this study was to investigate the effect of a highly viscous, left-shifted hemoglobin vesicle solution (HbV) on the hypoxia-related inflammation and the microcirculation in critically ischemic peripheral tissue. DESIGN: Randomized prospective study. SETTING: University laboratory. SUBJECTS: Twenty-four male golden Syrian hamsters. INTERVENTIONS: Island flaps were dissected from the back skin of anesthetized hamsters for assessment with intravital microscopy. The flap included a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. One hour after completion of the preparation, the animals received an injection of 25% of total blood volume of 0.9% NaCl or NaCl suspended with HbVs at a concentration of 5 g/dL (HbV5) or 10 g/dL (HbV10). MEASUREMENTS AND MAIN RESULTS: Plasma viscosity was increased from 1.32 cP to 1.61 cP and 2.14 cP after the administration of HbV5 and HbV10, respectively (both p < .01). Both HbV solutions raised partial oxygen tension (Clark-type microprobes) in the ischemic tissue from approximately 10 torr to 17 torr (p < .01), which was paralleled by an increase in capillary perfusion by > 200% (p < .01). The 50% increase in macromolecular capillary leakage found over time in the control animals was completely abolished by the HbV solutions (p < .01), which was accompanied by a > 50% (p < .01) reduction in cells immunohistochemically stained for tumor necrosis factor-alpha and interleukin-6 and in leukocyte counts, whereas no such changes were observed in the anatomically perfused, normoxic tissue. CONCLUSIONS: Our study suggests that in critically ischemic, hypoxic peripheral tissue, hypoxia-related inflammation may be reduced by a top-load infusion of HbV solutions. We attributed this effect to a restoration of tissue oxygenation and an increase in plasma viscosity, both of which may have resulted in attenuation of secondary microcirculatory impairments.
Resumo:
AIM: To assess the clinical and radiographic outcomes of immediate transmucosal placement of implants into molar extraction sockets. STUDY DESIGN: Twelve-month multicenter prospective cohort study. MATERIAL AND METHODS: Following molar extraction, tapered implants with an endosseous diameter of 4.8 mm and a shoulder diameter of 6.5 mm were immediately placed into the sockets. Molars with evidence of acute periapical pathology were excluded. After implant placement and achievement of primary stability, flaps were repositioned and sutured allowing a non-submerged, transmucosal healing. Peri-implant marginal defects were treated according to the principles of guided bone regeneration (GBR) by means of deproteinized bovine bone mineral particles in conjunction with a bioresrobable collagen membrane. Standardized radiographs were obtained at baseline and 12 months thereafter. Changes in depth and width of the distance from the implant shoulder (IS) and from the alveolar crest (AC) to the bottom of the defect (BD) were assessed. RESULTS: Eighty-two patients (42 males and 40 females) were enrolled and followed for 12 months. They contributed with 82 tapered implants. Extraction sites displayed sufficient residual bone volume to allow primary stability of all implants. Sixty-four percent of the implants were placed in the areas of 36 and 46. GBR was used in conjunction with the placement of all implants. No post-surgical complications were observed. All implants healed uneventfully yielding a survival rate of 100% and healthy soft tissue conditions after 12 months. Radiographically, statistically significant changes (P<0.0001) in mesial and distal crestal bone levels were observed from baseline to the 12-month follow-up. CONCLUSIONS: The findings of this 12-month prospective cohort study showed that immediate transmucosal implant placement represented a predictable treatment option for the replacement of mandibular and maxillary molars lost due to reasons other than periodontitis including vertical root fractures, endodontic failures and caries.
Resumo:
QUESTIONS UNDER STUDY / PRINCIPLES: The surgical therapy of basal cell carcinoma (BCC) is especially demanding in the facial area. This retrospective study was undertaken to evaluate the outcome of staged surgical therapy (SST) of BCC of the head and neck region performed on an interdisciplinary basis at our institution. METHODS: Patients treated for BCC in the head and neck area between 1/1/1997 and 31/12/2001 were included in the study. The lesions were histologically evaluated. Diameter of lesion, number of stages, defect coverage, operation time, and recurrence and infection rates were analysed using descriptive and inferential statistical procedures. RESULTS: 281 patients were included in the study. SST was performed in two stages in 43.7%, in three stages in 12.9% and in four or more stages in 2.7%, depending on the type of tumour and the patient's pretreatment status. The total operating time per lesion averaged one hour. Defect coverage was achieved by direct closure (37.7%), by full thickness skin graft (39.5%), by split skin graft (1.1%), by local flaps (20.3%) or by composite grafts (1.1%). Median follow-up time was 58.5 months. Low rates of recurrence (3.6%) and infection (2%) were observed with this technique. CONCLUSIONS: The staged surgical therapy of basal cell carcinoma evaluated here offers a series of advantages in respect of patient comfort and safety and economy, while allowing precise histological safety with low infection rates and reliable long-term results.
Resumo:
Complications and failures after microvascular free tissue transfer for lower extremity reconstruction have a negative impact on postoperative course and final outcome. Therefore, a 10-year analysis on lower extremity reconstruction with free flaps was performed with a special emphasis on patient co-morbidities such as cardiovascular diseases, diabetes mellitus, body mass index and history of smoking, in order to identify potential risk factors. Complications such as haematoma, seroma, infection, wound dehiscence, as well as partial flap loss, postoperative thrombosis of the anastomosis and eventual total flap loss were gathered from the medical records. Limb salvage was 100%, however 40% suffered from complications ranging from minor wound dehiscence to total flap loss. None of the above-mentioned potential risk factors was associated with an increased rate of complications. However, in flaps that required revision for thrombosis, the age of the patients was significantly higher in the group of flaps that eventually failed when compared to flaps that were salvaged. In conclusion, lower extremity reconstruction with microvascular free tissue transfer is a safe and reliable procedure with a high success rate, however partial flap loss remains an important issue. Increased age was the only factor identified with an increased risk for subsequent flap loss in cases that were revised for thrombosis.
Resumo:
BACKGROUND: Tissues are endowed with protective mechanisms to counteract chronic ischemia. Previous studies have demonstrated that endogenous heme oxygenase (HO)-1 may protect parenchymal tissue from inflammation- and reoxygenation-induced injury. Nothing is known, however, on whether endogenous HO-1 also plays a role in chronic ischemia to protect from development of tissue necrosis. The aim of this study is, therefore, to evaluate in vivo whether endogenous HO-1 exerts protection on chronically ischemic musculocutaneous tissue, and whether this protection is mediated by an attenuation of the microcirculatory dysfunction. MATERIALS AND METHODS: In C57BL/6-mice, a chronically ischemic flap was elevated and fixed into a dorsal skinfold chamber. In a second group, tin-protoporphyrin-IX was administrated to competitively block the action of HO-1. Animals without flap elevation served as controls. With the use of intravital fluorescence microscopy, microcirculation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day observation period. The time course of HO-1 expression was determined by Western blotting. RESULTS: Chronic ischemia induced an increase of HO-1 expression, particularly at day 1 and 3. This was associated with arteriolar dilation and hyperperfusion, which was capable of maintaining an adequate capillary perfusion density in the critically perfused central part of the flap, demarcating the distal necrosis. Inhibition of endogenous HO-1 by tin-protoporphyrin-IX completely abrogated arteriolar dilation (44.6 +/- 6.2 microm versus untreated flaps: 71.3 +/- 7.3 microm; P < 0.05) and hyperperfusion (3.13 +/- 1.29 nL/s versus 8.55 +/- 3.56 nL/s; P < 0.05). This resulted in a dramatic decrease of functional capillary density (16 +/- 16 cm/cm(2)versus 84 +/- 31 cm/cm(2); P < 0.05) and a significant increase of apoptotic cell death (585 +/- 51 cells/mm(2)versus 365 +/- 53 cells/mm(2); P < 0.05), and tissue necrosis (73% +/- 5% versus 51% +/- 5%; P < 0.001). CONCLUSION: Thus, our results suggest that chronic ischemia-induced endogenous HO-1 protects ischemically endangered tissue, probably by the vasodilatory action of the HO-1-associated carbon monoxide.
Resumo:
The aim of this study is to evaluate the results of fasciocutaneous posterior interosseous artery island flaps in the treatment of recurrent or persistent carpal tunnel compression syndrome (CTS).
Resumo:
Soft tissue coverage of the medial ankle and foot remains a difficult, challenging, and often frustrating problem to patients as well as surgeons. To our knowledge, the abductor hallucis muscle flap is not frequently used and only a few well documented cases were found in literature. The purpose of this paper is to report and to present the long-term results of a series of four patients who underwent reconstruction of foot and ankle defects with the abductor hallucis muscle flap.In two cases, the abductor hallucis muscle flap was transposed in combination with a medialis pedis flap to cover a medial ankle defect, whereas in another case it was combined with a medial plantar flap. In this latter case, the muscle flap served to fill up a calcaneal dead space after osteomyelitis debridement, whereas the cutaneous flap was used to replace debrided skin at the heel. The abductor hallucis flap was used as a distally-based turnover flap to cover a large forefoot defect in a fourth case. Follow-up period ranged between 18 and 64 months (mean 43.3). In the early postoperative period, two flaps healed completely In two patients marginal flap necrosis occurred which was subsequently skin grafted. No donor-site complication occurred in any of the patients. In all cases, protective sensation of the skin was satisfactory as early as 6 months. In two cases mild hyperkeratosis at the skin graft border to the sole skin (non-weight bearing area of medial plantar and medialis pedis flap donor site) was present, but probably related to poor foot care. All patients were fully mobile as early as 3 months after treatment. In the long-term follow-up (43.3 months), all flaps provided with durable coverage. Functional gait deficit due to consumtion of the abductor hallucis muscle was not apparent.Our long-term results demonstrated that the abductor hallucis muscle flap is a versatile, and reliable flap suitable for the reconstruction of foot and ankle defects. Utilizing the abductor hallucis muscle as a pedicled flap (distally or proximally-based) with or without conjoined regional fasciocutaneous flaps offers a successful and durable alternative to microsurgical tree flaps for small to moderate defects over the calcaneus region, medial ankle, medial foot, and forefoot with exposed bone, tendon, or joint.
Resumo:
We investigated the feasibility in rats of enhancing skin-flap prefabrication with subdermal injections of adenovirus-encoding vascular endothelial growth factor (Ad-VEGF). The left saphenous vascular pedicle was used as a source for vascular induction. A peninsular abdominal flap (8 x 8 cm) was elevated as distally based, keeping the epigastric vessels intact on both sides. After the vascular pedicle was tacked underneath the abdominal flap, 34 rats were randomly divided into three groups according to treatment protocol. The implantation site around the pedicle was injected with Ad-VEGF in group I (n = 10), with adenovirus-encoding green fluorescent protein (Ad-GFP) in control group I (n = 14), and with saline in control group II (n = 10). All injections were given subdermally at four points around the implanted vessel by an individual blinded to the treatment protocol. The peninsular flap was sutured in its place, and 4 weeks later, an abdominal island flap based solely on the implanted vessels was elevated. The prefabricated island flap was sutured back, and flap viability was evaluated on day 7. Skin specimens were stained with hematoxylin and eosin for histological evaluation. In two rats from each group, microangiography was performed to visualize the vascularity of the prefabricated flaps. There was a significant increase in survival of prefabricated flaps in the Ad-VEGF group compared to the control groups: Ad-VEGF, 88.9 +/- 6.1% vs. Ad-GFP, 65.6 +/- 9.4% (P < 0.05) and saline, 56.0 +/- 3.4% (P < 0.05). Sections from four prefabricated flaps treated with Ad-GFP revealed multiple sites of shiny deposits of green fluorescent protein around the area of local administration 1 day and 3 weeks after gene therapy. Histological examination done under high-power magnification (x400) with a light microscope revealed increased vascularity and mild inflammation surrounding the implanted vessel in all groups. However, we were unable to demonstrate any significant quantitative difference with respect to vascularity and inflammatory infiltrates in prefabricated flaps treated with Ad-VEGF compared with controls. Microangiographic studies showed increased vascularity around the implanted pedicle, which was similar in all groups. However, vascularization was distributed in a larger area in the prefabricated flaps treated with Ad-VEGF. In this study, the authors demonstrated that adenovirus-mediated VEGF gene therapy increased the survival of prefabricated flaps, suggesting that it may allow prefabrication of larger flaps and have the potential to reduce the time required for flap maturation.
Resumo:
The anteromedial thigh (AMT) flap is reviewed in terms of its vascular anatomy and previous clinical reports in the literature. Our own series of 5 patients treated with this flap for defects in the head and neck region and lower extremity is presented. Although several authors controversially discussed vasculature, we constantly found the pedicle as an emerging septocutaneous perforator at a point where the medial border of the rectus femoris muscle is crossed by the sartorius muscle. In all 5 patients, the AMT flap provided stable coverage with no flap loss. Based on our findings, we conclude that the anteromedial thigh flap offers all the advantages of fasciocutaneous flaps. Therefore, we recommend this flap as an alternative for defects requiring coverages of thin to moderate skin thickness. However, it should be remembered that variations in vascular anatomy are possible.
Resumo:
AIM: To assess soft tissues healing at immediate transmucosal implants placed into molar extraction sites with buccal self-contained dehiscences. MATERIAL AND METHODS: For this 12-month controlled clinical trial, 15 subjects received immediate transmucosal tapered-effect (TE) implants placed in molar extraction sockets displaying a buccal bone dehiscence (test sites) with a height and a width of > or =3 mm, respectively. Peri-implant marginal defects were treated according to the principles of Guided Bone Regeneration (GBR) by means of deproteinized bovine bone mineral particles in conjunction with a bioresorbable collagen membrane. Fifteen subjects received implants in healed molar sites (control sites) with intact buccal alveolar walls following tooth extraction. In total, 30 TE implants with an endosseous diameter of 4.8 mm and a shoulder diameter of 6.5 mm were used. Flaps were repositioned and sutured, allowing non-submerged, transmucosal soft tissues healing. At the 12-month follow-up, pocket probing depths (PPD) and clinical attachment levels (CAL) were compared between implants placed in the test and the control sites, respectively. RESULTS: All subjects completed the 12-month follow-up period. All implants healed uneventfully, yielding a survival rate of 100%. After 12 months, statistically significantly higher (P<0.05) PPD and CAL values were recorded around implants placed in the test sites compared with those placed in the control sites. CONCLUSIONS: The findings of this controlled clinical trial showed that healing following immediate transmucosal implant installation in molar extraction sites with wide and shallow buccal dehiscences yielded less favorable outcomes compared with those of implants placed in healed sites, and resulted in lack of 'complete' osseointegration.
Resumo:
Local hypoxia, as due to trauma, surgery, or arterial occlusive disease, may severely jeopardize the survival of the affected tissue and its wound-healing capacity. Initially developed to replace blood transfusions, artificial oxygen carriers have emerged as oxygen therapeutics in such conditions. The aim of this study was to target primary wound healing and survival in critically ischemic skin by the systemic application of left-shifted liposomal hemoglobin vesicles (HbVs). This was tested in bilateral, cranially based dorsal skin flaps in mice treated with a HbV solution with an oxygen affinity that was increased to a P(50) (partial oxygen tension at which the hemoglobin becomes 50% saturated with oxygen) of 9 mmHg. Twenty percent of the total blood volume of the HbV solution was injected immediately and 24 h after surgery. On the first postoperative day, oxygen saturation in the critically ischemic middle flap portions was increased from 23% (untreated control) to 39% in the HbV-treated animals (P < 0.05). Six days postoperatively, flap tissue survival was increased from 33% (control) to 57% (P < 0.01) and primary healing of the ischemic wound margins from 6.6 to 12.7 mm (P < 0.05) after HbV injection. In addition, higher capillary counts and endothelial nitric oxide synthase expression (both P < 0.01) were found in the immunostained flap tissue. We conclude that left-shifted HbVs may ameliorate the survival and primary wound healing in critically ischemic skin, possibly mediated by endothelial nitric oxide synthase-induced neovascularization.
Resumo:
The aim of this study was to investigate the effect of human recombinant erythropoietin (EPO) on the microcirculation and oxygenation of critically ischemic tissue and to elucidate the role of endothelial NO synthase in EPO-mediated tissue protection. Island flaps were dissected from the back skin of anesthetized male Syrian golden hamsters including a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. Before ischemia, animals received an injection of epoetin beta at a dose of 5,000 U/kg body weight with (n = 7) or without (n = 7) blocking NO synthase by 30 mg/kg body weight L-NAME (Nomega-nitro-L-arginine methyl ester hydrochloride). Saline-treated animals served as control (n = 7). Ischemic tissue damage was characterized by severe hypoperfusion and inflammation, hypoxia, and accumulation of apoptotic cell nuclei after 5 h of collateralization. Erythropoietin pretreatment increased arteriolar and venular blood flow by 33% and 37%, respectively (P < 0.05), and attenuated leukocytic inflammation by approximately 75% (P < 0.05). Furthermore, partial tissue oxygen tension in the ischemic tissue increased from 8.2 to 15.8 mmHg (P < 0.05), which was paralleled by a 21% increased density of patent capillaries (P < 0.05) and a 50% reduced apoptotic cell count (P < 0.05). The improved microcirculation and oxygenation were associated with a 2.2-fold (P < 0.05) increase of endothelial NO synthase protein expression. Of interest, L-NAME completely abolished all the beneficial effects of EPO pretreatment. Our study demonstrates that, in critically ischemic and hypoxic collateralized tissue, EPO pretreatment improves tissue perfusion and oxygenation in vivo. This effect may be attributed to NO-dependent vasodilative effects and anti-inflammatory actions on the altered vascular endothelium.