57 resultados para Fiber reinforcement (E)
Resumo:
OBJECTIVE: The Ross operation remains a controversially discussed procedure, because concern exists regarding late dilatation of the neoaortic root and progressive regurgitation of the autograft valve. We present our early experience with an external reinforcement of the autograft, which is inserted into a prosthetic Dacron graft with an artificial aortic root configuration. This detail should help to prevent neoaortic root dilatation. PATIENTS AND METHODS: Between 2006 and 2007, 12 patients (mean age 16 +/- 38 years; range 15-38 years) underwent a Ross procedure by this technique. Indications were aortic regurgitation (n = 2), aortic stenosis (n = 5), and combined aortic stenosis and insufficiency (n = 5). A bicuspid aortic valve was present in 9 patients. Balloon valvuloplasty had been performed in 7 patients. Follow-up was performed by clinical and echocardiographic examinations. RESULTS: No early or late deaths occurred in this small series, and freedom from reoperation is 100%. Echocardiographic follow-up confirmed absence of aortic insufficiency in 11 patients after a mean of 11 months (range 2-30 months). In 1 patient, a small asymmetric regurgitation jet was already observed at discharge echocardiography. As expected, no neoaortic root dilatation was observed during follow-up. All patients are in New York Heart Association class I. CONCLUSIONS: The present technique is a simple and reproducible technical step that does not require significant additional time. Inclusion of the autograft within a root prosthesis may be especially indicated in situations known for late autograft dilatation, namely, bicuspid aortic valve, predominant aortic insufficiency, and ascending aortic enlargement.
Resumo:
INTRODUCTION: We report the results of a titanium acetabular reinforcement ring with a hook (ARRH) in primary total hip arthroplasty (THA), which was introduced in 1987 and continues to be used routinely in our center. The favorable results of this device in arthroplasty for developmental dysplasia and difficult revisions motivated its use in primary THA. With this implant only minimal acetabular reaming is necessary, anatomic positioning is achieved by placing the hook around the teardrop and a homogenous base for cementing the polyethylene cup is provided. MATERIALS AND METHODS: Between April 1987 and December 1991, 241 THAs with insertion of an ARRH were performed in 178 unselected, consecutive patients (average age 58 years; range 30-84 years) with a secondary osteoarthrosis in 41% of the cases. RESULTS: At the time of the latest follow-up, 33 patients (39 hips) had died and 17 cases had been lost to follow-up. The median follow-up was 122 months with a minimum of 10 years. Eight hips had been revised, leaving 177 hips in 120 living patients without revision. Six cups were revised because of aseptic loosening. Two hips were revised for sepsis. The mean Merle d'Aubigné score for the remaining hips was 16 (range 7-18) at the latest follow-up. For aseptic loosening, the probability of survival of the cup was 0.97 (95% confidence interval, 0.94-0.99). However, analysis of radiographs implied loosening in seven other cups without clinical symptoms. CONCLUSIONS: The results of primary THA using an acetabular reinforcement ring parallel the excellent results of these implants often observed in difficult primary and revision arthroplasty at a minimum of 10 years. Survivorship is comparable to modern cementless implants. Medial migration that occurs with loosening of the acetabular component seems to be prevented with this implant. Radiographic loosening signs can exist without clinical symptoms.
Resumo:
We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .
Resumo:
Activated T cells use very late antigen-4/α4β1 integrin for capture, rolling on, and firm adhesion to endothelial cells, and use leukocyte function-associated antigen-1/αLβ2 integrin for subsequent crawling and extravasation. Inhibition of α4β1 is sufficient to prevent extravasation of activated T cells and is successfully used to combat autoimmune diseases, such as multiple sclerosis. Here we show that effector T cells lacking the integrin activator Kindlin-3 extravasate and induce experimental autoimmune encephalomyelitis in mice immunized with autoantigen. In sharp contrast, adoptively transferred autoreactive T cells from Kindlin-3-deficient mice fail to extravasate into the naïve CNS. Mechanistically, autoreactive Kindlin-3-null T cells extravasate when the CNS is inflamed and the brain microvasculature expresses high levels of integrin ligands. Flow chamber assays under physiological shear conditions confirmed that Kindlin-3-null effector T cells adhere to high concentrations of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, albeit less efficiently than WT T cells. Although these arrested T cells polarize and start crawling, only few remain firmly adherent over time. Our data demonstrate that the requirement of Kindlin-3 for effector T cells to induce α4β1 and αLβ2 integrin ligand binding and stabilization of integrin-ligand bonds is critical when integrin ligand levels are low, but of less importance when integrin ligand levels are high.
Resumo:
We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.
Resumo:
Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm.
Resumo:
In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong.