112 resultados para Fast fluctuations
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.
Resumo:
Classical antibody-based serotyping of Escherichia coli is an important method in diagnostic microbiology for epidemiological purposes, as well as for a rough virulence assessment. However, serotyping is so tedious that its use is restricted to a few reference laboratories. To improve this situation we developed and validated a genetic approach for serotyping based on the microarray technology. The genes encoding the O-antigen flippase (wzx) and the O-antigen polymerase (wzy) were selected as target sequences for the O antigen, whereas fliC and related genes, which code for the flagellar monomer, were chosen as representatives for the H phenotype. Starting with a detailed bioinformatic analysis and oligonucleotide design, an ArrayTube-based assay was established: a fast and robust DNA extraction method was coupled with a site-specific, linear multiplex labeling procedure and hybridization analysis of the biotinylated amplicons. The microarray contained oligonucleotide DNA probes, each in duplicate, representing 24 of the epidemiologically most relevant of the over 180 known O antigens (O antigens 4, 6 to 9, 15, 26, 52, 53, 55, 79, 86, 91, 101, 103, 104, 111, 113, 114, 121, 128, 145, 157, and 172) as well as 47 of the 53 different H antigens (H antigens 1 to 12, 14 to 16, 18 to 21, 23 to 34, 37 to 43, 45, 46, 48, 49, 51 to 54, and 56). Evaluation of the microarray with a set of defined strains representing all O and H serotypes covered revealed that it has a high sensitivity and a high specificity. All of the conventionally typed 24 O groups and all of the 47 H serotypes were correctly identified. Moreover, strains which were nonmotile or nontypeable by previous serotyping assays yielded unequivocal results with the novel ArrayTube assay, which proved to be a valuable alternative to classical serotyping, allowing processing of single colonies within a single working day.
Resumo:
BACKGROUND: The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. METHODS: Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. RESULTS: We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. CONCLUSIONS: By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.
Resumo:
This EEG study was performed to clarify the time course of brain electrical events and possible vigilance changes associated with perceptual flips during multistable perception. 13 healthy subjects (28.5 3.8 years) were recorded with a 21-channel digital EEG during a stroboscopic alternative motion paradigm implying illusionary motion with ambiguous direction. Perceptual flips were preceded by a significant decrease of EEG frequencies, and followed by a significant frequency increase with a trend to overshoot. EEG slowing is a reliable sign of vigilance decrease and can be related to thalamic deactivation. This is consistent with a recent fMRI study, which showed thalamic deactivation associated with perceptual flips. The study added important chronological information about this phenomenon and allows the conclusion that reduced vigilance facilitates perceptual discontinuities during multistable perception.
Resumo:
Determination of relevant clinical monitoring parameters for helping guide the intensive care therapy in patients with severe head injury, is one of the most demanding issues in neurotrauma research. New insights into cerebral autoregulation and metabolism have revealed that a rigid cerebral perfusion pressure (CPP) regimen might not be suitable for all severe head injured patients. We thus developed an online analysis technique to monitor the correlation (AI rho) between the spontaneous fluctuations of the mean arterial blood pressure (MABP) and the intracranial pressure (ICP). In addition, brain tissue oxygen (PtiO2) and metabolic microdialysate measures including glucose and lactate were registered. We found that in patients with good outcome, the AI rho values were significantly lower as compared with patients with poor outcome. Accordingly, microdialysate glucose and lactate were significantly higher in the good outcome group. We conclude that online determination of AI rho offers a valuable additional and technically easily performable tool for guidance of therapy in patients with severe head injury.
Resumo:
In this randomized, double-blind, multicenter study, patients whose blood pressure (BP) was uncontrolled by monotherapy were switched directly to amlodipine/valsartan 5/160 mg (n=443) or 10/160 mg (n=451). After 16 weeks, BP control (levels <140/90 mm Hg or <130/80 mm Hg for diabetics) was achieved in 72.7% (95% confidence interval [CI], 68.6-76.9) of patients receiving amlodipine/valsartan 5/160 mg and in 74.8% (95% CI, 70.8-78.9) receiving amlodipine/valsartan 10/160 mg. Incremental reductions from baseline in mean sitting systolic and diastolic BP were significantly greater with the higher dose (20.0+/-0.7 vs 17.5+/-0.7 mm Hg; P=.0003 and 11.6+/-0.4 vs 10.4+/-0.4 mm Hg; P=.0046). Incremental BP reductions were also achieved with both regimens irrespective of previous monotherapy, hypertension severity, diabetic status, body mass index, and age. Peripheral edema was the most frequent adverse event. These results provide support for the BP-lowering benefits of complementary antihypertensive therapy with amlodipine and valsartan in patients with hypertension uncontrolled by previous monotherapy.