39 resultados para Family of subsets
Resumo:
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Resumo:
ABSTRACT: INTRODUCTION: In transgenic animal models of sepsis, members of the Bcl-2-family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro- and anti-apoptotic members of the Bcl-2-family of proteins in patients with early stage severe sepsis. METHODS: In this prospective case-control study patients were recruited from three intensive care units in a university hospital. Sixteen patients were enrolled as soon as they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and eleven healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine (PS) externalization in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed by flow cytometry. Specific mRNA's of Bcl-2 family members were quantified from whole blood by real-time polymerase chain reaction. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc testing was performed. RESULTS: In all lymphocyte populations caspase-3 (p<0.05) was activated, which was reflected in an increased PS externalization (p<0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p<005) and in B-cells (p<0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared to critically ill patients (p<0.001) and 51.6 fold as compared to healthy controls (p<0.05). Bid was increased 12.9 fold compared to critically ill (p<0.001). In the group of the mitochondrial apoptosis-inducers, Bak was upregulated 5.6 fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p<0.001, p<0.05). CONCLUSIONS: In early severe sepsis a gene expression pattern with induction of the pro-apoptotic Bcl-2 family members Bim, Bid and Bak and a downregulation of the anti-apoptotic Bcl-2 and Bcl-xl was observed in peripheral blood. This constellation may affect cellular susceptibility to apoptosis and complex immune dysfunction in sepsis.
Resumo:
Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.
Resumo:
Infections by the bacterium Aeromonas salmonicida subsp. achromogenes cause significant disease in a number of fish species. In this study, we showed that AsaP1, a toxic 19-kDa metallopeptidase produced by A. salmonicida subsp. achromogenes, belongs to the group of extracellular peptidases (Aeromonas type) (MEROPS ID M35.003) of the deuterolysin family of zinc-dependent aspzincin endopeptidases. The structural gene of AsaP1 was sequenced and found to be highly conserved among gram-negative bacteria. An isogenic Delta asaP1 A. salmonicida subsp. achromogenes strain was constructed, and its ability to infect fish was compared with that of the wild-type (wt) strain. The Delta asaP1 strain was found to infect Arctic charr, Atlantic salmon, and Atlantic cod, but its virulence was decreased relative to that of the wt strain. The 50% lethal dose of the AsaP1 mutant was 10-fold higher in charr and 5-fold higher in salmon than that of the wt strain. The pathology induced by the AsaP1-deficient strain was also different from that of the wt strain. Furthermore, the mutant established significant bacterial colonization in all observed organs without any signs of a host response in the infected tissue. AsaP1 is therefore the first member of the M35 family that has been shown to be a bacterial virulence factor.
Resumo:
Sequences of the gene encoding the beta-subunit of the RNA polymerase (rpoB) were used to delineate the phylogeny of the family Pasteurellaceae. A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal rpoB-derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the rpoB gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the rpoB sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the rpoB phylogeny was in better agreement with DNA-DNA hybridization studies than the phylogeny derived from 16S rDNA. The rpoB gene is strongly conserved within the various species of the family of Pasteurellaceae. Hence, rpoB gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the Pasteurellaceae and may also prove useful for reorganizing the current taxonomy of this bacterial family.
Resumo:
Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.
Resumo:
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.
Resumo:
Spermadhesins belong to a novel family of secretory proteins of the male genital tract. They are major proteins of the seminal plasma and have been found peripherally associated to the sperm surface. So far, they have only been detected in ungulates, specifically in pig, cattle, and horse, respectively. Spermadhesins form a subgroup of the superfamily of proteins with a CUB-domain that has been found in a variety of developmentally regulated proteins. The structure and function of the spermadhesins have been investigated in the pig. They are multifunctional proteins showing a range of ligand-binding abilities, e.g. to carbohydrates, phospholipids, and protease inhibitors, suggesting that they may be involved in different steps of fertilization. We report here the genomic organization of the porcine spermadhesin gene cluster as well as a detailed comparative analysis with respect to other mammalian species. The porcine spermadhesin genes are located on SSC 14q28-q29 in a region syntenic to HSA 10q26. The pig contains five closely linked spermadhesin genes, whereas only two spermadhesin genes are present in the cattle genome. Inactive copies of spermadhesin genes are still detectable in the human, chimp, and dog genome while the corresponding region was lost from the rodent genomes of mouse and rat. Within the pig, the five spermadhesin genes contain both highly diverged and highly conserved regions. Interestingly, the pattern of divergence does not correlate with the position of the exons. Evolutionary analyses suggest that the pattern of diversity is shaped by ancestral variation, recombination, and new mutations.
Resumo:
Despite various efforts to promote sport participation among youth, social inequalities still exist. An explanation for these social inequalities could be traced back to transgenerational transmission of sport-related values and behaviour patterns in a family (Baur, 1989). Therefore, children’s socialisation to sport is strongly influenced by the parents’ sport-related values and sport behaviour (Burrmann, 2005). However, findings of previous studies are inconsistent, and the daily sport-related behaviour patterns of families have often not been taken into account. The paper deals with the question, to what extent sport participation of youth is influenced by factors such as the importance of sport, the self-evidence of regular sport activity, mutual support, shared sport activities, sport-related health-awareness and communication about sport in the family. In order to pursue this research question, socialisation theories were used as theoretical framework (Hurrelmann, 2006). Based on this approach, a quantitative online survey where 4’039 adolescents and young adults from the ages of 15 to 30 (n = 4’039, M = 21.48, SD = 4.64) answered questions according their sport participation and the sport-related patterns of their families. Furthermore, a qualitative study that included guideline-based interviews with adolescents and young adults (n = 13) were undertaken. Content analysis was used to analyse the interviews. Initial findings of the multiple regression analysis reveal that the most important predictors of sport participation of youth are communication about sport (β = .18, p < .001), mutual support (β = .13, p < .001), regular sport activity (β = .10, p < .01) and the importance of sport in the family (β = .10, p < .01). By means of content analysis, more in-depth information could be identified. The promotion of sport through sport-related behaviour patterns in the family appears to be a successful strategy to develop a durable sport commitment in youth. References Baur, J. (1989). Körper- und Bewegungskarrieren [Body and exercise careers]. Schorndorf: Hofmann. Burrmann, U. (2005). Zur Vermittlung und intergenerationalen "Vererbung" von Sport(vereins)engagements in der Herkunftsfamilie [On placing and "inheriting" intergenerational sport(club) commitment in the family of origin]. Sport und Gesellschaft, 2, 125–154. Hurrelmann, K. (2006). Einführung in die Sozialisationstheorie [Introduction to socialisation theory] (9th ed.). Studium Paedagogik. Weinheim: Beltz.