94 resultados para Extrasolar planets


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meter-per-second precision achieved by today’s velocimeters enables us to search for 1−10 M⊕ planets in the habitable zone of cool stars. This paper reports on the detection of three planets orbiting GJ 163 (HIP 19394), a M3 dwarf monitored by our ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ 163 over a period of eight years. We searched the radial-velocity time series for coherent signals and found five distinct periodic variabilities. We investigated the stellar activity and called into question the planetary interpretation for two signals. Before more data can be acquired we concluded that at least three planets are orbiting GJ 163. They have orbital periods of Pb = 8.632 ± 0.002, Pc = 25.63 ± 0.03, and Pd = 604 ± 8 days and minimum masses msini = 10.6 ± 0.6, 6.8 ± 0.9, and 29 ± 3 M⊕, respectively. We hold our interpretations for the two additional signals with periods P(e) = 19.4 and P(f) = 108 days. The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean motion resonance. The planet GJ 163c, in particular, is a super-Earth with an equilibrium temperature of Teq = (302 ± 10)(1 − A)1/4 K and may lie in the so-called habitable zone for albedo values (A = 0.34 − 0.89) moderately higher than that of Earth (A⊕ = 0.2−0.3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin   (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available.