80 resultados para Expression pattern
Resumo:
The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva.
Resumo:
The murine gap junction protein connexin43 (Cx43) is expressed in blood vessels, with vastly different contribution by endothelial and smooth muscle cells. We have used the Cre recombinase under control of TIE2 transcriptional elements to inactivate a floxed Cx43 gene specifically in endothelial cells. Cre-mediated deletion led to replacement of the Cx43 coding region by a lacZ reporter gene. This allowed us to monitor the extent of deletion and to visualize the endothelial expression pattern of Cx43. We found widespread endothelial expression of the Cx43 gene during embryonic development, which became restricted largely to capillaries and small vessels in all adult organs examined. Mice lacking Cx43 in endothelium did not exhibit altered blood pressure, in contrast to mice deficient in Cx40. Our results show that lacZ activation after deletion of the target gene allows us to determine the extent of cell type-specific deletion after phenotypical investigation of the same animal.
Resumo:
Differential cyp19 aromatase expression during development leads to sexual dimorphisms in the mammalian brain. Whether this is also true for fish is unknown. The aim of the current study has been to follow the expression of the brain-specific aromatase cyp19a2 in the brains of sexually differentiating zebrafish. To assess the role of cyp19a2 in the zebrafish brain during gonadal differentiation, we used quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry to detect differences in the transcript or protein levels and/or expression pattern in juvenile fish, histology to monitor the gonadal status, and double immunofluorescence with neuronal or radial glial markers to characterize aromatase-positive cells. Our data show that cyp19a2 expression levels during zebrafish sexual differentiation cannot be assigned to a particular sex; the expression pattern in the brain is similar in both sexes and aromatase-positive cells appear to be mostly of radial glial nature.
Resumo:
The human adrenal cortex produces mineralocorticoids, glucocorticoids, and androgens in a species-specific, hormonally regulated, zone-specific, and developmentally characteristic fashion. Most molecular studies of adrenal steroidogenesis use human adrenocortical NCI-H295A and NCI-H295R cells as a model because appropriate animal models do not exist. NCI-H295A and NCI-H295R cells originate from the same adrenocortical carcinoma which produced predominantly androgens but also smaller amounts of mineralocorticoids and glucocorticoids. Research data obtained from either NCI-H295A or NCI-H295R cells are generally compared, although for the same experiments no direct comparison between the two cell lines has been performed. Therefore, we compared the steroid profile and the expression pattern of important genes involved in steroidogenesis in both cell lines. We found that steroidogenesis differs profoundly. NCI-H295A cells produce more mineralocorticoids, whereas NCI-H295R cells produce more androgens. Expression of the 3beta-hydroxysteroid dehydrogenase (HSD3B2), cytochrome b5, and sulfonyltransferase genes is higher in NCI-H295A cells, whereas expression of the cytochrome P450c17 (CYP17), 21-hydroxylase (CYP21), and P450 oxidoreductase genes does not differ between the cell lines. We found lower 3beta-hydroxysteroid dehydrogenase type 2 but higher 17,20-lyase activity in NCI-H295R cells explaining the 'androgenic' steroid profile for these cells and resembling the zona reticularis of the human adrenal cortex. Both cell lines were found to express the ACTH receptor at low levels consistent with low stimulation by ACTH. By contrast, both cell lines were readily stimulated by 8Br-cAMP. The angiotensin type 1 receptor was highly expressed in NCI-H295R than NCI-H295A cells and angiotensin II stimulated steroidogenesis in NCI-H295R but not NCI-H295A cells. Our data suggest that comparative studies between NCI-H295A and NCI-H295R cells may help find important regulators of mineralocorticoid or androgen biosynthesis.
Resumo:
Using variants of the murine BW5147 lymphoma cell-line, we have previously identified 3 monoclonal antibodies (MAbs) that discriminate between metastatic and nonmetastatic BW5147-derived T-cell hybridomas and lymphomas, as well as BW5147-unrelated T-lymphomas. These MAbs were reported to recognize an identical membrane-associated sialoglycoprotein, termed "metastatic T-cell hybridoma antigen" (MTH-Ag). Here, we document that the expression pattern of the MTH-Ag on metastatic and nonmetastatic BW5147 variants correlates with that of the P-selectin glycoprotein ligand 1 (PSGL-1), a sialomucin involved in leukocyte recruitment to sites of inflammation. Moreover, the MAbs against the MTH-Ag recognize PSGL-1 when it is transfected in MTH-Ag-negative BW5147 variants, suggesting that the MTH-Ag is PSGL-1. Overexpression of MTH-Ag/PSGL-1 in MTH-Ag-negative BW5147 variants did not affect their in vivo malignancy. Yet, down-regulation of MTH-Ag/PSGL-1 expression on metastatic, MTH-Ag-positive BW5147 variants, using an RNA interference (RNAi) approach, resulted, in a dose-dependent manner, in a significant reduction of liver and spleen colonization and a delay in mortality of the recipient mice upon intravenous inoculation. Collectively, these results demonstrate that, although MTH-Ag/PSGL-1 overexpression alone may not be sufficient for successful dissemination and organ colonization, MTH-Ag/PSGL-1 plays a critical role in hematogenous metastasis of lymphoid cancer cells.
Resumo:
AIMS: To evaluate the expression of matrix metalloproteinase-19 (MMP-19) in oropharyngeal squamous cell carcinoma along with its association with structural features of invasiveness. To investigate whether MMP-19 expression correlates with lymphatic or systemic metastasis and prognosis in patients who have received definitive radiotherapy. METHODS AND RESULTS: The histological evaluation of the invasive front was based on Bryne's malignancy grading system. We correlated the immunohistochemical expression pattern with morphological parameters which characterize tumor invasiveness such as keratinization, nuclear polymorphism, invasion pattern, and the host inflammatory response. Local immunoreactivity for MMP-19 was positively correlated with tumor invasiveness as reflected in its structural characteristics and the degree of nuclear polymorphism, and negatively correlated with the inflammatory response of the host. No correlation existed between MMP-19 expression and clinicopathological features (TNM stage, grade of differentiation) or a patient''s outcome and prognosis. CONCLUSIONS: This latter finding probably reflects the unique change for MMPs from high immunoreactivity within healthy tissue areas and non-invasive tumor parts, through absence in the least invasive neoplastic regions, to strong re-expression at a highly invasive front of the same tumor. Our findings indicate that MMP-19 can be used as a marker for tumor invasiveness in patients with oropharyngeal squamous cell carcinoma.
Resumo:
Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.
Resumo:
DJ-1 is mutated in autosomal recessive, early onset Parkinson's disease but the exact localization of the DJ-1 gene product in the mammalian brain is largely unknown. We aimed to evaluate the DJ-1 mRNA expression pattern in the mouse brain. Serial coronal sections of brains of five male and five female adult mice were investigated by using in situ hybridization with a DJ-1 specific 35S-labeled oligonucleotide probe. Hybridized sections were analyzed after exposure to autoradiography films and after coating with a photographic emulsion. DJ-1 was heterogeneously expressed throughout the mouse central nervous system. A high expression of DJ-1 mRNA was detected in neuronal and non-neuronal populations of several structures of the motor system such as the substantia nigra, the red nucleus, the caudate putamen, the globus pallidus, and the deep nuclei of the cerebellum. Furthermore, DJ-1 mRNA was also highly expressed in non-motor structures including the hippocampus, the olfactory bulb, the reticular nucleus of the thalamus, and the piriform cortex. The high expression of DJ-1 mRNA in brain regions involved in motor control is compatible with the occurrence of parkinsonian symptoms after DJ-1 mutations. However, expression in other regions indicates that a dysfunction of DJ-1 may contribute to additional clinical features in patients with a DJ-1 mutation.
Resumo:
OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.
Resumo:
FGFRL1 is a novel FGF receptor that lacks the intracellular tyrosine kinase domain. While mammals, including man and mouse, possess a single copy of the FGFRL1 gene, fish have at least two copies, fgfrl1a and fgfrl1b. In zebrafish, both genes are located on chromosome 14, separated by about 10 cM. The two genes show a similar expression pattern in several zebrafish tissues, although the expression of fgfrl1b appears to be weaker than that of fgfrl1a. A clear difference is observed in the ovary of Fugu rubripes, which expresses fgfrl1a but not fgfrl1b. It is therefore possible that subfunctionalization has played a role in maintaining the two fgfrl1 genes during the evolution of fish. In human beings, the FGFRL1 gene is located on chromosome 4, adjacent to the SPON2, CTBP1 and MEAEA genes. These genes are also found adjacent to the fgfrl1a gene of Fugu, suggesting that FGFRL1, SPON2, CTBP1 and MEAEA were preserved as a coherent block during the evolution of Fugu and man.
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Resumo:
The expression pattern of angiotensin AT2 receptors with predominance during fetal life and upregulation under pathological conditions during tissue injury/repair process suggests that AT2 receptors may exert an important action in injury/repair adaptive mechanisms. Less is known about AT2 receptors in acute ischemia-induced cardiac injury. We aimed here to elucidate the role of AT2 receptors after acute myocardial infarction. Double immunofluorescence staining showed that cardiac AT2 receptors were mainly detected in clusters of small c-kit+ cells accumulating in peri-infarct zone and c-kit+AT2+ cells increased in response to acute cardiac injury. Further, we isolated cardiac c-kit+AT2+ cell population by modified magnetic activated cell sorting and fluorescence activated cell sorting. These cardiac c-kit+AT2+ cells, represented approximately 0.19% of total cardiac cells in infarcted heart, were characterized by upregulated transcription factors implicated in cardiogenic differentiation (Gata-4, Notch-2, Nkx-2.5) and genes required for self-renewal (Tbx-3, c-Myc, Akt). When adult cardiomyocytes and cardiac c-kit+AT2+ cells isolated from infarcted rat hearts were cocultured, AT2 receptor stimulation in vitro inhibited apoptosis of these cocultured cardiomyocytes. Moreover, in vivo AT2 receptor stimulation led to an increased c-kit+AT2+ cell population in the infarcted myocardium and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction. These data suggest that cardiac c-kit+AT2+ cell population exists and increases after acute ischemic injury. AT2 receptor activation supports performance of cardiomyocytes, thus contributing to cardioprotection via cardiac c-kit+AT2+ cell population.
Resumo:
Chemokines regulate cellular trafficking to and from lymphoid follicles. Here, the distribution pattern of four CCL chemokines is defined by in situ hybridization in human lymphoid follicles from tonsils and lymph nodes (LNs) of newborns and adults. Cells expressing CCL11 (eotaxin) and CCL20 (Exodus) were preferentially located within follicles, while cells expressing CCL21 (secondary lymphoid-tissue chemokine) and CCL24 (eotaxin-2) mRNA were almost exclusively found in the perifollicular areas. Hence, the two CCR3-binding chemokines, CCL11 and CCL24, showed a mutually exclusive expression pattern in the intra- and extra-follicular areas, respectively. Chemokine gene expression paralleled follicular maturation: in tonsils, where approximately 80% of follicles are polarized, CCL11 and CCL20 mRNA-positive cells were detected more frequently than in lymph nodes from adults, where about half of follicles are non-polarized. No intrafollicular chemokine expression was detectable in the primary follicles from newborns. Extrafollicular cells expressing CCL21 and CCL24 were again more frequent in tonsils than in LNs from adults. The observed preferential presence of cells expressing CC chemokines in polarized human lymphoid follicles indicates that chemokines are not only instrumental in the induction of follicle formation, but may also be involved in their further differentiation.
Resumo:
Fibroblast growth factor (FGF) receptor-like protein 1 (FGFRL1) is a recently discovered member of the FGF receptor (FGFR) family. Similar to the classical FGFRs, it contains three extracellular immunoglobulin-like domains and interacts with FGF ligands. However, in contrast to the classical receptors, it does not contain any intracellular tyrosine kinase domain and consequently cannot signal by transphosphorylation. In mouse kidneys, FgfrL1 is expressed primarily at embryonic stages E14-E15 in regions where nascent nephrons develop. In this study, we used whole-mount in situ hybridization to show the spatial pattern of five different Fgfrs in the developing mouse kidney. We compared the expression pattern of FgfrL1 with that of other Fgfrs. The expression pattern of FgfrL1 closely resembled that of Fgfr1, but clearly differed from that of Fgfr2‑Fgfr4. It is therefore conceivable that FgfrL1 signals indirectly via Fgfr1. The mechanisms by which FgfrL1 affects the activity of Fgfr1 remain to be elucidated.
Resumo:
Recently, we reported a functional interaction between miR-21 and its identified chemokine target CCL20 in colorectal cancer (CRC) cell lines. Here, we investigated whether such functional interactions are permitted at the cellular level which would require an inverse correlation of expression and also co-expression of miR-21 and CCL20 in the same cell. Expression profiling was performed using qPCR, and ELISA, in situ hybridization and immunohistochemistry were applied for the presentation of their cellular localization. We demonstrated that miR-21 as well as CCL20 were both significantly upregulated in CRC tissues; thus, showing no antidromic expression pattern. This provided an initial clue that miR-21 and CCL20 may not be expressed in the same cell. In addition, we located miR-21 expression at the cellular level predominantly in stromal cells such as tumor-associated fibroblasts and to a minor degree in immune cells such as macrophages and lymphocytes. Likewise, CCL20 expression was primarily detected in tumor-infiltrating immune cells. Thus, investigating the cellular localization of miR-21 and its target CCL20 revealed that both molecules are expressed predominantly in the microenvironment of CRC tumors.