37 resultados para Europe, Western
Resumo:
Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over the northern side of the Alpine range and Central Europe. As the relevant processes triggering these so-called Vb events and their impact on extreme precipitation are not yet fully understood, this study focuses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013) to identify prominent Vb situations. Precipitation in the ERA-Interim and the E-OBS data sets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two data sets. Both data sets exhibit high variability in precipitation amounts among different Vb events. While only 23 % of all Vb events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the northern Alpine region and Central Europe are induced by Vb events, although Vb cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb events, the analysis of the 10 heaviest and lowest precipitation Vb events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the northern slopes of the Alps. These effects are the main reasons for a disastrous outcome of Vb events, and consequently are absent in the Vb events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb events is mainly related to large-scale dynamics rather than to thermodynamic processes.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.
Resumo:
Puumala virus (PUUV) is one of the predominant hantavirus species in Europe causing mild to moderate cases of haemorrhagic fever with renal syndrome. Parts of Lower Saxony in north-western Germany are endemic for PUUV infections. In this study, the complete PUUV genome sequence of a bank vole-derived tissue sample from the 2007 outbreak was determined by a combined primer-walking and RNA ligation strategy. The S, M and L genome segments were 1,828, 3,680 and 6,550 nucleotides in length, respectively. Sliding-window analyses of the nucleotide sequences of all available complete PUUV genomes indicated a non-homogenous distribution of variability with hypervariable regions located at the 3′-ends of the S and M segments. The overall similarity of the coding genome regions to the other PUUV strains ranged between 80.1 and 84.7 % at the level of the nucleotide sequence and between 89.5 and 98.1 % for the deduced amino acid sequences. In comparison to the phylogenetic trees of the complete coding sequences, trees based on partial segments revealed a general drop in phylogenetic support and a lower resolution. The Astrup strain S and M segment sequences showed the highest similarity to sequences of strains from geographically close sites in the Osnabrück Hills region. In conclusion, a primer-walking-mediated strategy resulted in the determination of the first complete nucleotide sequence of a PUUV strain from Central Europe. Different levels of variability along the genome provide the opportunity to choose regions for analyses according to the particular research question, e.g., large-scale phylogenetics or within-host evolution.
Resumo:
The sweet chestnut (Castanea sativa Mill.) is the only native species of the genus in Europe. The broad diffusion and active management by man resulted in the establishment of the species at the limits of its potential ecological range, which makes it difficult to trace its original natural area. The present distribution ranges from North-Western Africa (e.g. Morocco) to North-Western Europe (southern England, Belgium) and from south-western Asia (e.g. Turkey) to Eastern Europe (e.g. Romania), the Caucasus (Georgia, Armenia) and the Caspian Sea. In Europe the main chestnut forests are concentrated in a few countries such as Italy, France and the Iberian Peninsula. The sweet chestnut has a remarkable multipurpose character, and may be managed for timber production (coppice and high forest) as well as for fruit production (traditional orchards), including a broad range of secondary products and ecosystem services.
Resumo:
Throughout human history, religion and politics have entertained the most intimate of connections as systems of authority regulating individuals and society. While the two have come apart through the process of secularization, secularism is challenged today by the return of public religion. This cogent analysis unravels the nature of the connection, disconnection, and attempted reconnection between religion and politics in the West. In a comparison of Western Europe and North America, Christianity and Islam, Joppke advances far-reaching theoretical, historical, and comparative-political arguments. With respect to theory, it is argued that only a “substantive” concept of religion, as pertaining to the existence of supra-human powers, opens up the possibility of a historical-comparative perspective on religion. At the level of history, secularization is shown to be the distinct outcome of Latin Christianity itself. And at the level of comparative politics, the Christian Right in America which has attacked the “wall of separation” between religion and state and Islam in Europe with the controversial insistence on sharia law and other “illiberal” claims from some quarters are taken to be counterpart incarnations of public religion and challenges to the secular state. This clearly argued, sweeping book will provide an invaluable framework for approaching an array of critical issues at the intersection of religion, law and politics for advanced students and researchers across the social sciences and legal studies, as well as for the interested public.
Resumo:
The relative roles of high- versus low-latitude forcing of millennial-scale climate variability are still not well understood. Here we present terrestrial–marine climate profiles from the southwestern Iberian margin, a region particularly affected by precession, that show millennial climate oscillations related to a nonlinear response to the Earth's precession cycle during Marine Isotope Stage (MIS) 19. MIS 19 has been considered the best analogue to our present interglacial from an astronomical point of view due to the reduced eccentricity centred at 785 ka. In our records, seven millennial-scale forest contractions punctuated MIS 19 superimposed to two orbitally-driven Mediterranean forest expansions. In contrast to our present interglacial, we evidence for the first time low latitude-driven 5000-yr cycles of drying and cooling in the western Mediterranean region, along with warmth in the subtropical gyre related to the fourth harmonic of precession. These cycles indicate repeated intensification of North Atlantic meridional moisture transport that along with decrease in boreal summer insolation triggered ice growth and may have contributed to the glacial inception, at ∼774 ka. The freshwater fluxes during MIS 19ab amplified the cooling events in the North Atlantic promoting further cooling and leading to MIS 18 glaciation. The discrepancy between the dominant cyclicity observed during MIS 1, 2500-yr, and that of MIS 19, 5000-yr, challenges the similar duration of the Holocene and MIS 19c interglacials under natural boundary conditions.