34 resultados para Environmental Site Design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The Early Holocene sediment of a lake at tree line (Gouillé Rion, 2343 m a.s.l.) in the Swiss Central Alps was sampled for plant macrofossils. Thin (0.5 cm) slices, representing time intervals of c. 50 years each from 11 800 to 7800 cal. year bp, were analysed and the data compared with independent palaeoclimatic proxies to study vegetational responses to environmental change. 2 Alpine plant communities (e.g. with Salix herbacea) were established at 11 600–11 500 cal. year bp, when oxygen-isotope records showed that temperatures increased by c. 3–4 °C within decades. Larix decidua trees reached the site at c. 11 350 cal. year bp, probably in response to further warming by 1–2 °C. Forests dominated by L. decidua persisted until 9600 cal. year bp, when Pinus cembra became more important. 3 The dominance of Larix decidua for two millennia is explained by dry summer conditions, and possibly low winter temperatures, which favoured it over the late-successional Pinus cembra. Environmental conditions were a result of variations in the earth's orbit, leading to a maximum of summer and a minimum of winter solar radiation. Other heliophilous and drought-adapted species, such as Dryas octopetala and Juniperus nana, could persist in the open L. decidua forests, but were out-competed when the shade-tolerant P. cembra expanded. 4 The relative importance of Larix decidua decreased during periods of diminished solar radiation at 11 100, 10 100 and 9400 cal. year bp. Stable concentrations of L. decidua indicate that these percentage oscillations were caused by temporary increases of Pinus cembra, Dryas octopetala and Juniperus nana that can be explained by increases in moisture and/or decreases in summer temperature. 5 The final collapse of Larix decidua at 8400 cal. year bp was possibly related to abrupt climatic cooling as a consequence of a large meltwater input to the North Atlantic. Similarly, the temporary exclusion of Pinus cembra from tree line at 10 600–10 200 cal. year bp may be related to slowing down of thermohaline circulation at 10 700–10 300 cal. year bp. 6 Our results show that tree line vegetation was in dynamic equilibrium with climate, even during periods of extraordinarily rapid climatic change. They also imply that forecasted global warming may trigger rapid upslope movements of the tree line of up to 800 m within a few decades or centuries at most, probably inducing large-scale displacements of plant species as well as irrecoverable biodiversity losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes), and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lake shore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27 of the established populations survived until the end of the experiment in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.