37 resultados para Enterprise Content Management
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
The overarching objective of this dissertation is to uncover why and how individually experienced fits and misfits translate into different outcomes of user behavior and satisfaction and whether these individual fit/misfit outcomes are in line with organizational intent. In search of patterns and possible archetype users in the context of ES PIPs, this dissertation is the first study that specifically links the theoretical concepts of the aggregated individual fit experiences with the individual and organizational outcome of these experiences (i.e. behavioral reaction, user satisfaction, and alignment with organizational intent). The case study’s findings provide preliminary support for four archetype users characterized by specific fit/misfit experience-outcome patterns.
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
Digital Rights Management Systems (DRMS) are seen by content providers as the appropriate tool to, on the one hand, fight piracy and, on the other hand, monetize their assets. Although these systems claim to be very powerful and include multiple protection technologies, there is a lack of understanding about how such systems are currently being implemented and used by content providers. The aim of this paper is twofold. First, it provides a theoretical basis through which we present shortly the seven core protection technologies of a DRMS. Second, this paper provides empirical evidence that the seven protection technologies outlined in the first section of this paper are the most commonly used technologies. It further evaluates to what extent these technologies are being used within the music and print industry. It concludes that the three main Technologies are encryption, password, and payment systems. However, there are some industry differences: the number of protection technologies used, the requirements for a DRMS, the required investment, or the perceived success of DRMS in fighting piracy.
Resumo:
Technology advances in hardware, software and IP-networks such as the Internet or peer-to-peer file sharing systems are threatening the music business. The result has been an increasing amount of illegal copies available on-line as well as off-line. With the emergence of digital rights management systems (DRMS), the music industry seems to have found the appropriate tool to simultaneously fight piracy and to monetize their assets. Although these systems are very powerful and include multiple technologies to prevent piracy, it is as of yet unknown to what extent such systems are currently being used by content providers. We provide empirical analyses, results, and conclusions related to digital rights management systems and the protection of digital content in the music industry. It shows that most content providers are protecting their digital content through a variety of technologies such as passwords or encryption. However, each protection technology has its own specific goal, and not all prevent piracy. The majority of the respondents are satisfied with their current protection but want to reinforce it for the future, due to fear of increasing piracy. Surprisingly, although encryption is seen as the core DRM technology, only few companies are currently using it. Finally, half of the respondents do not believe in the success of DRMS and their ability to reduce piracy.
Resumo:
Specification consortia and standardization bodies concentrate on e-Learning objects to en-sure reusability of content. Learning objects may be collected in a library and used for deriv-ing course offerings that are customized to the needs of different learning communities. How-ever, customization of courses is possible only if the logical dependencies between the learn-ing objects are known. Metadata for describing object relationships have been proposed in several e-Learning specifications. This paper discusses the customization potential of e-Learning objects but also the pitfalls that exist if content is customized inappropriately.