71 resultados para Elk Rapids (Mich.)
Resumo:
Poor growth is an indication for antiretroviral therapy (ART) and a criterion for treatment failure. We examined variability in growth response to ART in 12 programs in Malawi, Zambia, Zimbabwe, Mozambique, and South Africa.
Resumo:
To test the comparative effectiveness of 2 nonpharmacologic pain-relieving interventions administered alone or in combination across time for repeated heel sticks in preterm infants.
Resumo:
Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl--dependent HCO3- secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1-/- mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1-/- mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3- secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.
Resumo:
Beta-lactoglobulin (beta-LG) is the major whey protein in cow's milk. It is well established that the predominant 2 genetic variants, beta-LG A and B, are differentially expressed. Extensive investigation of the genetic variation in the promoter region of the BLG gene revealed the existence of specific haplotypes associated with the A and B variants, respectively. However, the genetic basis for the differential expression of BLG A and B alleles is still elusive. We have previously reported a quantitative beta-LG B variant, characterized by a very low beta-LG protein expression level. Here, we report that the corresponding BLG allele (BLG B*) shows a correspondingly low mRNA expression level. Comparative DNA sequencing of 7,670 bp of the BLG B* allele and the established BLG B allele revealed a unique difference of a C to A transversion at position 215 bp upstream of the translation initiation site (g.-215C>A). This mutation segregated perfectly with the differential phenotypic expression in a paternal half-sib family and could be confirmed in 2 independent cases. The sequence of the BLG B allele in the region of the mutation is highly conserved among 4 related ruminant species. The site of the mutation corresponds to a putative consensus-binding sequence for the transcription factors c-Rel and Elk-1 as predicted by searching the TRANSFAC database. The beta-LG B* site might be relevant in the natural production of milk of low beta-LG content.
Resumo:
Transmissible spongiform encephalopathies (TSE) form a group of human and animal diseases that share common features such as (a) distinct pathological lesions in the central nervous system, (b) transmissibility at least in experimental settings, and (c) a long incubation period. Considerable differences exist in the host range of individual TSEs, their routes of transmission, and factors influencing the host susceptibility (such as genotype). The objective of this review was to briefly describe the main epidemiological features of TSEs with emphasis on small ruminant (sheep, goats) TSE, bovine spongiform encephalopathy (BSE) in cattle and chronic wasting disease (CWD) in deer and elk.
Resumo:
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) potently amplifies acute inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Here we demonstrate that TREM-1 is also crucially involved in chronic inflammatory bowel diseases (IBD). Myeloid cells of the normal intestine generally lack TREM-1 expression. In experimental mouse models of colitis and in patients with IBD, however, TREM-1 expression in the intestine was upregulated and correlated with disease activity. TREM-1 significantly enhanced the secretion of relevant proinflammatory mediators in intestinal macrophages from IBD patients. Blocking TREM-1 by the administration of an antagonistic peptide substantially attenuated clinical course and histopathological alterations in experimental mouse models of colitis. This effect was also seen when the antagonistic peptide was administered only after the first appearance of clinical signs of colitis. Hence, TREM-1-mediated amplification of inflammation contributes not only to the exacerbation of acute inflammatory disorders but also to the perpetuation of chronic inflammatory disorders. Furthermore, interfering with TREM-1 engagement leads to the simultaneous reduction of production and secretion of a variety of pro-inflammatory mediators such as TNF, IL-6, IL-8 (CXCL8), MCP-1 (CCL2), and IL-1beta. Therefore, TREM-1 may also represent an attractive target for the treatment of chronic inflammatory disorders.
Resumo:
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.
Resumo:
Successful pancreas transplantation in type I diabetic patients restores normal fasting glucose levels and biphasic insulin responses to glucose. However, virtually no data from pancreas recipients are available relative to other islet hormonal responses or hormonal counterregulation of hypoglycemia. Consequently, glucose, glucagon, catecholamine, and pancreatic polypeptide responses to insulin-induced hypoglycemia and to stimulation with arginine and secretin were examined in 38 diabetic pancreas recipients, 54 type I diabetic nonrecipients, and 26 nondiabetic normal control subjects. Glucose recovery after insulin-induced hypoglycemia in pancreas recipients was significantly improved. Basal glucagon levels were significantly higher in recipients compared with nonrecipients and normal subjects. Glucagon responses to insulin-induced hypoglycemia were significantly greater in the pancreas recipients compared with nonrecipients and similar to that observed in control subjects. Glucagon responses to intravenous arginine were significantly greater in pancreas recipients than that observed in both the nonrecipients and normal subjects. No differences were observed in epinephrine responses during insulin-induced hypoglycemia. No differences in pancreatic polypeptide responses to hypoglycemia were observed when comparing the recipient and nonrecipient groups, both of which were less than that observed in the control subjects. Our data demonstrate significant improvement in glucose recovery after hypoglycemia which was associated with improved glucagon secretion in type I diabetic recipients of pancreas transplantation.