41 resultados para E. Silverman


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asthma is an increasing health problem worldwide, but the long-term temporal pattern of clinical symptoms is not understood and predicting asthma episodes is not generally possible. We analyse the time series of peak expiratory flows, a standard measurement of airway function that has been assessed twice daily in a large asthmatic population during a long-term crossover clinical trial. Here we introduce an approach to predict the risk of worsening airflow obstruction by calculating the conditional probability that, given the current airway condition, a severe obstruction will occur within 30 days. We find that, compared with a placebo, a regular long-acting bronchodilator (salmeterol) that is widely used to improve asthma control decreases the risk of airway obstruction. Unexpectedly, however, a regular short-acting beta2-agonist bronchodilator (albuterol) increases this risk. Furthermore, we find that the time series of peak expiratory flows show long-range correlations that change significantly with disease severity, approaching a random process with increased variability in the most severe cases. Using a nonlinear stochastic model, we show that both the increased variability and the loss of correlations augment the risk of unstable airway function. The characterization of fluctuations in airway function provides a quantitative basis for objective risk prediction of asthma episodes and for evaluating the effectiveness of therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Among children with wheeze and recurrent cough there is great variation in clinical presentation and time course of the disease. We previously distinguished 5 phenotypes of wheeze and cough in early childhood by applying latent class analysis to longitudinal data from a population-based cohort (original cohort). OBJECTIVE To validate previously identified phenotypes of childhood cough and wheeze in an independent cohort. METHODS We included 903 children reporting wheeze or recurrent cough from an independent population-based cohort (validation cohort). As in the original cohort, we used latent class analysis to identify phenotypes on the basis of symptoms of wheeze and cough at 2 time points (preschool and school age) and objective measurements of atopy, lung function, and airway responsiveness (school age). Prognostic outcomes (wheeze, bronchodilator use, cough apart from colds) 5 years later were compared across phenotypes. RESULTS When using a 5-phenotype model, the analysis distinguished 3 phenotypes of wheeze and 2 of cough as in the original cohort. Two phenotypes were closely similar in both cohorts: Atopic persistent wheeze (persistent multiple trigger wheeze and chronic cough, atopy and reduced lung function, poor prognosis) and transient viral wheeze (early-onset transient wheeze with viral triggers, favorable prognosis). The other phenotypes differed more between cohorts. These differences might be explained by differences in age at measurements. CONCLUSIONS Applying the same method to 2 different cohorts, we consistently identified 2 phenotypes of wheeze (atopic persistent wheeze, transient viral wheeze), suggesting that these represent distinct disease processes. Differences found in other phenotypes suggest that the age when features are assessed is critical and should be considered carefully when defining phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Many preschool children have wheeze or cough, but only some have asthma later. Existing prediction tools are difficult to apply in clinical practice or exhibit methodological weaknesses. OBJECTIVE We sought to develop a simple and robust tool for predicting asthma at school age in preschool children with wheeze or cough. METHODS From a population-based cohort in Leicestershire, United Kingdom, we included 1- to 3-year-old subjects seeing a doctor for wheeze or cough and assessed the prevalence of asthma 5 years later. We considered only noninvasive predictors that are easy to assess in primary care: demographic and perinatal data, eczema, upper and lower respiratory tract symptoms, and family history of atopy. We developed a model using logistic regression, avoided overfitting with the least absolute shrinkage and selection operator penalty, and then simplified it to a practical tool. We performed internal validation and assessed its predictive performance using the scaled Brier score and the area under the receiver operating characteristic curve. RESULTS Of 1226 symptomatic children with follow-up information, 345 (28%) had asthma 5 years later. The tool consists of 10 predictors yielding a total score between 0 and 15: sex, age, wheeze without colds, wheeze frequency, activity disturbance, shortness of breath, exercise-related and aeroallergen-related wheeze/cough, eczema, and parental history of asthma/bronchitis. The scaled Brier scores for the internally validated model and tool were 0.20 and 0.16, and the areas under the receiver operating characteristic curves were 0.76 and 0.74, respectively. CONCLUSION This tool represents a simple, low-cost, and noninvasive method to predict the risk of later asthma in symptomatic preschool children, which is ready to be tested in other populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE Histologic data from fatal cases suggest that extreme prematurity results in persisting alveolar damage. However, there is new evidence that human alveolarization might continue throughout childhood and could contribute to alveolar repair. OBJECTIVES To examine whether alveolar damage in extreme-preterm survivors persists into late childhood, we compared alveolar dimensions between schoolchildren born term and preterm, using hyperpolarized helium-3 magnetic resonance. METHODS We recruited schoolchildren aged 10-14 years stratified by gestational age at birth (weeks) to four groups: (1) term-born (37-42 wk; n = 61); (2) mild preterm (32-36 wk; n = 21); (3) extreme preterm (<32 wk, not oxygen dependent at 4 wk; n = 19); and (4) extreme preterm with chronic lung disease (<32 wk and oxygen dependent beyond 4 wk; n = 18). We measured lung function using spirometry and plethysmography. Apparent diffusion coefficient, a surrogate for average alveolar dimensions, was measured by helium-3 magnetic resonance. MEASUREMENTS AND MAIN RESULTS The two extreme preterm groups had a lower FEV1 (P = 0.017) compared with term-born and mild preterm children. Apparent diffusion coefficient was 0.092 cm(2)/second (95% confidence interval, 0.089-0.095) in the term group. Corresponding values were 0.096 (0.091-0.101), 0.090 (0085-0.095), and 0.089 (0.083-0.094) in the mild preterm and two extreme preterm groups, respectively, implying comparable alveolar dimensions across all groups. Results did not change after controlling for anthropometric variables and potential confounders. CONCLUSIONS Alveolar size at school age was similar in survivors of extreme prematurity and term-born children. Because extreme preterm birth is associated with deranged alveolar structure in infancy, the most likely explanation for our finding is catch-up alveolarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Age- and height-adjusted spirometric lung function of South Asian children is lower than those of white children. It is unclear whether this is purely genetic, or partly explained by the environment. In this study, we assessed whether cultural factors, socioeconomic status, intrauterine growth, environmental exposures, or a family and personal history of wheeze contribute to explaining the ethnic differences in spirometric lung function. METHODS We studied children aged 9 to 14 years from a population-based cohort, including 1088 white children and 275 UK-born South Asians. Log-transformed spirometric data were analyzed using multiple linear regressions, adjusting for anthropometric factors. Five different additional models adjusted for (1) cultural factors, (2) indicators of socioeconomic status, (3) perinatal data reflecting intrauterine growth, (4) environmental exposures, and (5) personal and family history of wheeze. RESULTS Height- and gender-adjusted forced vital capacity (FVC) and forced expired volume in 1 second (FEV1) were lower in South Asian than white children (relative difference -11% and -9% respectively, P < .001), but PEF and FEF50 were similar (P ≥ .5). FEV1/FVC was higher in South Asians (1.8%, P < .001). These differences remained largely unchanged in all 5 alternative models. CONCLUSIONS Our study confirmed important differences in lung volumes between South Asian and white children. These were not attenuated after adjustment for cultural and socioeconomic factors and intrauterine growth, neither were they explained by differences in environmental exposures nor a personal or family history of wheeze. This suggests that differences in lung function may be mainly genetic in origin. The implication is that ethnicity-specific predicted values remain important specifically for South Asian children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Systemic approaches are needed to understand how variations in the genes associated with opioid pharmacokinetics and response can be used to predict patient outcome. The application of pharmacogenetic analysis to two cases of life-threatening opioid-induced respiratory depression is presented. The usefulness of genotyping in the context of these cases is discussed. METHODS A panel of 20 functional candidate polymorphisms in genes involved in the opioid biotransformation pathway (CYP2D6, UGT2B7, ABCB1, OPRM1, COMT) were genotyped in these two patients using commercially available genotyping assays. RESULTS In case 1, the patient experienced adverse outcomes when administered codeine and morphine, but not hydromorphone. Genetic test results suggested that this differential response may be due to an inherent propensity to generate active metabolites from both codeine and morphine. These active metabolites are not generated with hydromorphone. In case 2, the patient experienced severe respiratory depression during postoperative recovery following standard doses of morphine. The patient was found to carry genetic variations that result in decreased morphine efflux transporter activity at the blood-brain barrier and increased sensitivity to opioids. CONCLUSIONS Knowledge of the relative contribution of pharmacogenetic biomarkers and their influence on opioid response are continually evolving. Pharmacogenetic analysis, together with clinical history, has the potential to provide mechanistic insight into severe respiratory depressive events in patients who receive opioids at therapeutic doses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Previous studies found larger lung volumes at school-age in formerly breastfed children, with some studies suggesting an effect modification by maternal asthma. We wanted to explore this further in children who had undergone extensive lung function testing. The current study aimed to assess whether breastfeeding was associated with larger lung volumes and, if so, whether all compartments were affected. We also assessed association of breastfeeding with apparent diffusion coefficient (ADC), which measures freedom of gas diffusion in alveolar-acinar compartments and is a surrogate of alveolar dimensions. Additionally, we assessed whether these effects were modified by maternal asthma. METHODS We analysed data from 111 children and young adults aged 11-21 years, who had participated in detailed lung function testing, including spirometry, plethysmography and measurement of ADC of (3)Helium ((3)He) by MR. Information on breastfeeding came from questionnaires applied in early childhood (age 1-4 years). We determined the association between breastfeeding and these measurements using linear regression, controlling for potential confounders. RESULTS We did not find significant evidence for an association between duration of breastfeeding and lung volumes or alveolar dimensions in the entire sample. In breastfed children of mothers with asthma, we observed larger lung volumes and larger average alveolar size than in non-breastfed children, but the differences did not reach significance levels. CONCLUSIONS Confirmation of effects of breastfeeding on lung volumes would have important implications for public health. Further investigations with larger sample sizes are warranted.