38 resultados para Dynamic changes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11700years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid-inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim, a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid-inferred July-temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model-data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500m and treeline positions of ca. 2500m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low-impact pastoralism to preserve species-rich alpine meadows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GENTRANS, a comprehensive one-dimensional dynamic simulator for electrophoretic separations and transport, was extended for handling electrokinetic chiral separations with a neutral ligand. The code can be employed to study the 1:1 interaction of monovalent weak and strong acids and bases with a single monovalent weak or strong acid or base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool to investigate the dynamics of chiral separations and to provide insight into the buffer systems used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte stacking across conductivity and buffer additive gradients, changes of additive concentration, buffer component concentration, pH, and conductivity across migrating sample zones and peaks, and the formation and migration of system peaks can thereby be investigated in a hitherto inaccessible way. For model systems with charged weak bases and neutral modified β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities, and mobilities of selector-analyte complexes have been determined by CZE, simulated and experimentally determined electropherograms and isotachopherograms are shown to be in good agreement. Simulation data reveal that CZE separations of cationic enantiomers performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak that has a small impact on the buffer composition under which enantiomeric separation takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE There is increasing evidence that epileptic activity involves widespread brain networks rather than single sources and that these networks contribute to interictal brain dysfunction. We investigated the fast-varying behavior of epileptic networks during interictal spikes in right and left temporal lobe epilepsy (RTLE and LTLE) at a whole-brain scale using directed connectivity. METHODS In 16 patients, 8 with LTLE and 8 with RTLE, we estimated the electrical source activity in 82 cortical regions of interest (ROIs) using high-density electroencephalography (EEG), individual head models, and a distributed linear inverse solution. A multivariate, time-varying, and frequency-resolved Granger-causal modeling (weighted Partial Directed Coherence) was applied to the source signal of all ROIs. A nonparametric statistical test assessed differences between spike and baseline epochs. Connectivity results between RTLE and LTLE were compared between RTLE and LTLE and with neuropsychological impairments. RESULTS Ipsilateral anterior temporal structures were identified as key drivers for both groups, concordant with the epileptogenic zone estimated invasively. We observed an increase in outflow from the key driver already before the spike. There were also important temporal and extratemporal ipsilateral drivers in both conditions, and contralateral only in RTLE. A different network pattern between LTLE and RTLE was found: in RTLE there was a much more prominent ipsilateral to contralateral pattern than in LTLE. Half of the RTLE patients but none of the LTLE patients had neuropsychological deficits consistent with contralateral temporal lobe dysfunction, suggesting a relationship between connectivity changes and cognitive deficits. SIGNIFICANCE The different patterns of time-varying connectivity in LTLE and RTLE suggest that they are not symmetrical entities, in line with our neuropsychological results. The highest outflow region was concordant with invasive validation of the epileptogenic zone. This enhanced characterization of dynamic connectivity patterns could better explain cognitive deficits and help the management of epilepsy surgery candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The Early Holocene sediment of a lake at tree line (Gouillé Rion, 2343 m a.s.l.) in the Swiss Central Alps was sampled for plant macrofossils. Thin (0.5 cm) slices, representing time intervals of c. 50 years each from 11 800 to 7800 cal. year bp, were analysed and the data compared with independent palaeoclimatic proxies to study vegetational responses to environmental change. 2 Alpine plant communities (e.g. with Salix herbacea) were established at 11 600–11 500 cal. year bp, when oxygen-isotope records showed that temperatures increased by c. 3–4 °C within decades. Larix decidua trees reached the site at c. 11 350 cal. year bp, probably in response to further warming by 1–2 °C. Forests dominated by L. decidua persisted until 9600 cal. year bp, when Pinus cembra became more important. 3 The dominance of Larix decidua for two millennia is explained by dry summer conditions, and possibly low winter temperatures, which favoured it over the late-successional Pinus cembra. Environmental conditions were a result of variations in the earth's orbit, leading to a maximum of summer and a minimum of winter solar radiation. Other heliophilous and drought-adapted species, such as Dryas octopetala and Juniperus nana, could persist in the open L. decidua forests, but were out-competed when the shade-tolerant P. cembra expanded. 4 The relative importance of Larix decidua decreased during periods of diminished solar radiation at 11 100, 10 100 and 9400 cal. year bp. Stable concentrations of L. decidua indicate that these percentage oscillations were caused by temporary increases of Pinus cembra, Dryas octopetala and Juniperus nana that can be explained by increases in moisture and/or decreases in summer temperature. 5 The final collapse of Larix decidua at 8400 cal. year bp was possibly related to abrupt climatic cooling as a consequence of a large meltwater input to the North Atlantic. Similarly, the temporary exclusion of Pinus cembra from tree line at 10 600–10 200 cal. year bp may be related to slowing down of thermohaline circulation at 10 700–10 300 cal. year bp. 6 Our results show that tree line vegetation was in dynamic equilibrium with climate, even during periods of extraordinarily rapid climatic change. They also imply that forecasted global warming may trigger rapid upslope movements of the tree line of up to 800 m within a few decades or centuries at most, probably inducing large-scale displacements of plant species as well as irrecoverable biodiversity losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hypercoagulable state might be one important mechanism linking obstructive sleep apnea (OSA) with incident myocardial infarction and stroke. However, previous studies on prothrombotic factors in OSA are not uniform and cross-sectional. We longitudinally studied prothrombotic factors in relation to OSA risk, adjusting for baseline levels of prothrombotic factors, demographics, metabolic parameters, aspirin use, and life style factors. The Berlin Questionnaire and/or neck circumference were used to define high OSA risk in 329 South African teachers (48.0 % male, 44.6 % black) at baseline and at three-year follow-up. Von Willebrand factor (VWF), fibrinogen, D-dimer, plasminogen activator inhibitor-1, clot lysis time (CLT), and soluble urokinase-type plasminogen activator receptor (suPAR) were measured in plasma. At baseline 35.7 % of participants had a high risk of OSA. At follow-up, persistently high OSA risk, persistently low OSA risk, OSA risk remission, and new-onset OSA risk were present in 26.1 %, 53.2 %, 9.4 %, and 11.3 % of participants, respectively. New-onset OSA risk was associated with a significant and longitudinal increase in VWF, fibrinogen, CLT, and suPAR relative to persistently low OSA risk; in VWF, fibrinogen, and suPAR relative to remitted OSA risk; and in VWF relative to persistently high OSA risk. Persistently high OSA risk was associated with an increase in CLT and suPAR relative to persistently low OSA risk and in D-dimer relative to remitted OSA risk. Remitted OSA risk was associated with D-dimer decrease relative to persistently low OSA risk. In OSA, hypercoagulability is a dynamic process with a most prominent three-year increase in individuals with new-onset OSA risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND In recent years, the scientific discussion has focused on new strategies to enable a torn anterior cruciate ligament (ACL) to heal into mechanically stable scar tissue. Dynamic intraligamentary stabilization (DIS) was first performed in a pilot study of 10 patients. The purpose of the current study was to evaluate whether DIS would lead to similarly sufficient stability and good clinical function in a larger case series. METHODS Acute ACL ruptures were treated by using an internal stabilizer, combined with anatomical repositioning of torn bundles and microfracturing to promote self-healing. Clinical assessment (Tegner, Lysholm, IKDC, and visual analogue scale [VAS] for patient satisfaction scores) and assessment of knee laxity was performed at 3, 6, 12, and 24 months. A one-sample design with a non-inferiority margin was chosen to compare the preoperative and postoperative IKDS and Lysholm scores. RESULTS 278 patients with a 6:4 male to female ratio were included. Average patient age was 31 years. Preoperative mean IKDC, Lysholm, and Tegner scores were 98.8, 99.3, and 5.1 points, respectively. The mean anteroposterior (AP) translation difference from the healthy contralateral knee was 4.7 mm preoperatively. After DIS treatment, the mean 12-month IKDC, Lysholm, and Tegner scores were 93.6, 96.2, and 4.9 points, respectively, and the mean AP translation difference was 2.3 mm. All these outcomes were significantly non-inferior to the preoperative or healthy contralateral values (p < 0.0001). Mean patient satisfaction was 8.8 (VAS 0-10). Eight ACL reruptures occurred and 3 patients reported insufficient subjective stability of the knee at the end of the study period. CONCLUSIONS Anatomical repositioning, along with DIS and microfracturing, leads to clinically stable healing of the torn ACL in the large majority of patients. Most patients exhibited almost normal knee function, reported excellent satisfaction, and were able to return to their previous levels of sporting activity. Moreover, this strategy resulted in stable healing of all sutured menisci, which could lower the rate of osteoarthritic changes in future. The present findings support the discussion of a new paradigm in ACL treatment based on preservation and self-healing of the torn ligament.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western corn rootworm (WCR) is a major pest of maize that is well adapted to most crop management strategies. Breeding for tolerance is a promising alternative to combat WCR, but is currently constrained by a lack of physiological understanding and phenotyping tools. We developed dynamic precision phenotyping approaches using carbon-11 with positron emission tomography, root autoradiography and radiometabolite flux analysis to understand maize tolerance to WCR. Our results reveal that WCR attack induces specific patterns of lateral root growth which are associated with a shift in auxin biosynthesis from indole-3-pyruvic acid to indole-3-acetonitrile. WCR attack also increases transport of newly synthesized amino acids to the roots, including the accumulation of glutamine. Finally, the regrowth zones of WCR attacked roots show an increase in glutamine turnover which strongly correlates with the induction of indole-3-acetonitrile-dependent auxin biosynthesis. In summary, our findings identify local changes in the auxin flux network as a promising marker for induced WCR tolerance.