69 resultados para Dynamic Navigation Model
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
In this paper we propose a new system that allows reliable acetabular cup placement when the THA is operated in lateral approach. Conceptually it combines the accuracy of computer-generated patient-specific morphology information with an easy-to-use mechanical guide, which effectively uses natural gravity as the angular reference. The former is achieved by using a statistical shape model-based 2D-3D reconstruction technique that can generate a scaled, patient-specific 3D shape model of the pelvis from a single conventional anteroposterior (AP) pelvic X-ray radiograph. The reconstructed 3D shape model facilitates a reliable and accurate co-registration of the mechanical guide with the patient’s anatomy in the operating theater. We validated the accuracy of our system by conducting experiments on placing seven cups to four pelvises with different morphologies. Taking the measurements from an image-free navigation system as the ground truth, our system showed an average accuracy of 2.1 ±0.7 o for inclination and an average accuracy of 1.2 ±1.4 o for anteversion.
Resumo:
Grammars for programming languages are traditionally specified statically. They are hard to compose and reuse due to ambiguities that inevitably arise. PetitParser combines ideas from scannerless parsing, parser combinators, parsing expression grammars and packrat parsers to model grammars and parsers as objects that can be reconfigured dynamically. Through examples and benchmarks we demonstrate that dynamic grammars are not only flexible but highly practical.
Resumo:
Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.
Resumo:
Membrane interactions of porphyrinic photosensitizers (PSs) are known to play a crucial role for PS efficiency in photodynamic therapy (PDT). In the current paper, the interactions between 15 different porphyrinic PSs with various hydrophilic/lipophilic properties and phospholipid bilayers were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. PS-membrane interactions were deduced from analysis of the main DOPC (1)H-NMR resonances (choline and lipid chain signals). Initial membrane adsorption of the PSs was indicated by induced changes to the DOPC choline signal, i.e. a split into inner and outer choline peaks. Based on this parameter, the PSs could be classified into two groups, Type-A PSs causing a split and the Type-B PSs causing no split. A further classification into two subgroups each, A1, A2 and B1, B2 was based on the observed time-dependent changes of the main DOPC NMR signals following initial PS adsorption. Four different time-correlated patterns were found indicating different levels and rates of PS penetration into the hydrophobic membrane interior. The type of interaction was mainly affected by the amphiphilicity and the overall lipophilicity of the applied PS structures. In conclusion, the NMR data provided valuable structural and dynamic insights into the PS-membrane interactions which allow deriving the structural constraints for high membrane affinity and high membrane penetration of a given PS. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Surgery involving arthroscopic reconstruction of the injured ligament is the gold standard treatment for torn anterior cruciate ligament (ACL). Recent studies support the hypothesis of biological self-healing of ruptured ACL. The aim of the study is to evaluate, in an animal model, the efficacy of a new technique, dynamic intraligamentary stabilization that utilizes biological self-healing for repair of acute ACL ruptures.
Resumo:
Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.
Resumo:
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.
Resumo:
Slow conduction and unidirectional conduction block (UCB) are key mechanisms of reentry. Following abrupt changes in heart rate, dynamic changes of conduction velocity (CV) and structurally determined UCB may critically influence arrhythmogenesis. Using patterned cultures of neonatal rat ventricular myocytes grown on microelectrode arrays, we investigated the dynamics of CV in linear strands and the behavior of UCB in tissue expansions following an abrupt decrease in pacing cycle length (CL). Ionic mechanisms underlying rate-dependent conduction changes were investigated using the Pandit-Clark-Giles-Demir model. In linear strands, CV gradually decreased upon a reduction of CL from 500 ms to 230-300 ms. In contrast, at very short CLs (110-220 ms), CV first decreased before increasing again. The simulations suggested that the initial conduction slowing resulted from gradually increasing action potential duration (APD), decreasing diastolic intervals, and increasing postrepolarization refractoriness, which impaired Na(+) current (I(Na)) recovery. Only at very short CLs did APD subsequently shorten again due to increasing Na(+)/K(+) pump current secondary to intracellular Na(+) accumulation, which caused recovery of CV. Across tissue expansions, the degree of UCB gradually increased at CLs of 250-390 ms, whereas at CLs of 180-240 ms, it first increased and subsequently decreased. In the simulations, reduction of inward currents caused by increasing intracellular Na(+) and Ca(2+) concentrations contributed to UCB progression, which was reversed by increasing Na(+)/K(+) pump activity. In conclusion, CV and UCB follow intricate dynamics upon an abrupt decrease in CL that are determined by the interplay among I(Na) recovery, postrepolarization refractoriness, APD changes, ion accumulation, and Na(+)/K(+) pump function.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
PURPOSE: Study of behavior and influence of a multileaf collimator (MLC) on dose calculation, verification, and portal energy spectra in the case of intensity-modulated fields obtained with a step-and-shoot or a dynamic technique. METHODS: The 80-leaf MLC for the Varian Clinac 2300 C/D was implemented in a previously developed Monte Carlo (MC) based multiple source model (MSM) for a 6 MV photon beam. Using this model and the MC program GEANT, dose distributions, energy fluence maps and energy spectra at different portal planes were calculated for three different MLC applications. RESULTS: The comparison of MC-calculated dose distributions in the phantom and portal plane, with those measured with films showed an agreement within 3% and 1.5 mm for all cases studied. The deviations mainly occur in the extremes of the intensity modulation. The MC method allows to investigate, among other aspects, dose components, energy fluence maps, tongue-and-groove effects and energy spectra at portal planes. CONCLUSION: The MSM together with the implementation of the MLC is appropriate for a number of investigations in intensity-modulated radiation therapy (IMRT).
Resumo:
A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.
Resumo:
INTRODUCTION: Recent advances in medical imaging have brought post-mortem minimally invasive computed tomography (CT) guided percutaneous biopsy to public attention. AIMS: The goal of the following study was to facilitate and automate post-mortem biopsy, to suppress radiation exposure to the investigator, as may occur when tissue sampling under computer tomographic guidance, and to minimize the number of needle insertion attempts for each target for a single puncture. METHODS AND MATERIALS: Clinically approved and post-mortem tested ACN-III biopsy core needles (14 gauge x 160 mm) with an automatic pistol device (Bard Magnum, Medical Device Technologies, Denmark) were used for probe sampling. The needles were navigated in gelatine/peas phantom, ex vivo porcine model and subsequently in two human bodies using a navigation system (MEM centre/ISTB Medical Application Framework, Marvin, Bern, Switzerland) with guidance frame and a CT (Emotion 6, Siemens, Germany). RESULTS: Biopsy of all peas could be performed within a single attempt. The average distance between the inserted needle tip and the pea centre was 1.4mm (n=10; SD 0.065 mm; range 0-2.3 mm). The targets in the porcine liver were also accurately punctured. The average of the distance between the needle tip and the target was 0.5 mm (range 0-1 mm). Biopsies of brain, heart, lung, liver, pancreas, spleen, and kidney were performed on human corpses. For each target the biopsy needle was only inserted once. The examination of one body with sampling of tissue probes at the above-mentioned locations took approximately 45 min. CONCLUSIONS: Post-mortem navigated biopsy can reliably provide tissue samples from different body locations. Since the continuous update of positional data of the body and the biopsy needle is performed using optical tracking, no control CT images verifying the positional data are necessary and no radiation exposure to the investigator need be taken into account. Furthermore, the number of needle insertions for each target can be minimized to a single one with the ex vivo proven adequate accuracy and, in contrast to conventional CT guided biopsy, the insertion angle may be oblique. Navigation for minimally invasive tissue sampling is a useful addition to post-mortem CT guided biopsy.
Resumo:
The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.
Resumo:
Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.