62 resultados para Domain
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
Resumo:
Ethanolamine phosphoglycerol (EPG) is a protein modification attached exclusively to eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is linked to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote Trypanosoma brucei, only domain III is modified by a single EPG. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but nothing is known about the EPG modifying enzyme(s). By expressing human eEF1A in T. brucei, we now show that EPG attachment to eEF1A is evolutionarily conserved between T. brucei and Homo sapiens. In contrast, S. cerevisiae eEF1A, which has been shown to lack EPG is not modified in T. brucei. Furthermore, we show that eEF1A cannot functionally complement across species when using T. brucei and S. cerevisiae as model organisms. However, functional complementation in yeast can be obtained using eEF1A chimera containing domains II or III from other species. In contrast, yeast domain I is strictly required for functional complementation in S. cerevisiae.
Resumo:
To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.
Resumo:
Motor symptoms in schizophrenia occur frequently and are relevant to diagnosis and antipsychotic therapy. To date motor symptoms are difficult to assess and their pathobiology is a widely unresolved issue. The Bern Psychopathology Scale for the assessment of system-specific psychotic symptoms (BPS) was designed to identify homogenous patient groups by focusing on three domains: language, affectivity and motor behavior. The present study aimed to validate the motor behavior domain of the BPS using wrist actigraphy. In total, 106 patients were rated with the BPS and underwent 24 h continuous actigraphy recording. The ratings of the global severity of the motor behavior domain (GSM) as well as the quantitative and the subjective items of the motor behavior domain of the BPS were significantly associated with actigraphic variables. In contrast, the qualitative items of the motor domain failed to show an association with actigraphy. Likewise, scores of the language and the affectivity domains were not related to actigraphic measures. In conclusion, we provided substantial external validity for global, quantitative and subjective ratings of the BPS motor behavior domain. Thus, the BPS is suitable to assess the dimension of quantitative motor behavior in the schizophrenia spectrum.
Resumo:
The presence of the schizont stage of the obligate intracellular parasites Theileria parva or T. annulata in the cytoplasm of an infected leukocyte results in host cell transformation via a mechanism that has not yet been elucidated. Proteins, secreted by the schizont, or expressed on its surface, are of interest as they can interact with host cell molecules that regulate host cell proliferation and/or survival. The major schizont surface protein is the polymorphic immunodominant molecule, PIM, which contains a large glutamine- and proline-rich domain (QP-rd) that protrudes into the host cell cytoplasm. Analyzing QP-rd generated by in vitro transcription/translation, we found that the signal peptide was efficiently cleaved post-translationally upon addition of T cell lysate or canine pancreatic microsomes, whereas signal peptide cleavage of a control protein only occurred cotranslationally and in the presence of microsomal membranes. The QP-rd of PIM migrated anomalously in SDS-PAGE and removal of the 19 amino acids corresponding to the predicted signal peptide caused a decrease in apparent molecular mass of 24kDa. The molecule was analyzed using monoclonal antibodies that recognize a set of previously defined PIM epitopes. Depending on the presence or the absence of the signal peptide, two conformational states could be demonstrated that are differentially recognized, with N-terminal epitopes becoming readily accessible upon signal peptide removal, and C-terminal epitopes becoming masked. Similar observations were made when the QP-rd of PIM was expressed in bacteria. Our observations could also be of relevance to other schizont proteins. A recent analysis of the proteomes of T. parva and T. annulata revealed the presence of a large family of potentially secreted proteins, characterized by the presence of large stretches of amino acids that are also particularly rich in QP-residues.
Resumo:
Large oligomeric proteins often contain several binding sites for different molecules and can therefore induce formation of larger protein complexes. Collagen XII, a multidomain protein with a small collagenous region, interacts with fibrillar collagens through its C-terminal region. However, no interactions to other extracellular proteins have been identified involving the non-collagenous N-terminal NC3 domain. To further elucidate the components of protein complexes present close to collagen fibrils, different extracellular matrix proteins were tested for interaction in a solid phase assay. Binding to the NC3 domain of collagen XII was found for the avian homologue of tenascin-X that in humans is linked to Ehlers-Danlos disease. The binding was further characterized by surface plasmon resonance spectroscopy and supported by immunohistochemical co-localization in chick and mouse tissue. On the ultrastructural level, detection of collagen XII and tenascin-X by immunogold labeling confirmed this finding.
Resumo:
Glycoprotein Ib (GPIb) is a platelet receptor with a critical role in mediating the arrest of platelets at sites of vascular damage. GPIb binds to the A1 domain of von Willebrand factor (vWF-A1) at high blood shear, initiating platelet adhesion and contributing to the formation of a thrombus. To investigate the molecular basis of GPIb regulation and ligand binding, we have determined the structure of the N-terminal domain of the GPIb(alpha) chain (residues 1-279). This structure is the first determined from the cell adhesion/signaling class of leucine-rich repeat (LRR) proteins and reveals the topology of the characteristic disulfide-bonded flanking regions. The fold consists of an N-terminal beta-hairpin, eight leucine-rich repeats, a disulfide-bonded loop, and a C-terminal anionic region. The structure also demonstrates a novel LRR motif in the form of an M-shaped arrangement of three tandem beta-turns. Negatively charged binding surfaces on the LRR concave face and anionic region indicate two-step binding kinetics to vWF-A1, which can be regulated by an unmasking mechanism involving conformational change of a key loop. Using molecular docking of the GPIb and vWF-A1 crystal structures, we were also able to model the GPIb.vWF-A1 complex.
Resumo:
The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of vascular morphogenesis. EphrinB2 may have an active signaling role, resulting in bi-directional signal transduction downstream of both ephrinB2 and Eph receptors. To separate the ligand and receptor-like functions of ephrinB2 in mice, we replaced the endogenous gene by cDNAs encoding either carboxyterminally truncated (ephrinB2(DeltaC)) or, as a control, full-length ligand (ephrinB2(WT)). While homozygous ephrinB2(WT/WT) animals were viable and fertile, loss of the ephrinB2 cytoplasmic domain resulted in midgestation lethality similar to ephrinB2 null mutants (ephrinB2(KO)). The truncated ligand was sufficient to restore guidance of migrating cranial neural crest cells, but ephrinB2(DeltaC/DeltaC) embryos showed defects in vasculogenesis and angiogenesis very similar to those observed in ephrinB2(KO/KO) animals. Our results indicate distinct requirements of functions mediated by the ephrinB carboxyterminus for developmental processes in the vertebrate embryo.
Resumo:
Time domain analysis of electroencephalography (EEG) can identify subsecond periods of quasi-stable brain states. These so-called microstates assumingly correspond to basic units of cognition and emotion. On the other hand, Global Field Synchronization (GFS) is a frequency domain measure to estimate functional synchronization of brain processes on a global level for each EEG frequency band [Koenig, T., Lehmann, D., Saito, N., Kuginuki, T., Kinoshita, T., Koukkou, M., 2001. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr Res. 50, 55-60.]. Using these time and frequency domain analyzes, several previous studies reported shortened microstate duration in specific microstate classes and decreased GFS in theta band in drug naïve schizophrenia compared to controls. The purpose of this study was to investigate changes of these EEG parameters after drug treatment in drug naïve schizophrenia. EEG analysis was performed in 21 drug-naive patients and 21 healthy controls. 14 patients were reevaluated 2-8 weeks (mean 4.3) after the initiation of drug administration. The results extended findings of treatment effect on brain functions in schizophrenia, and imply that shortened duration of specific microstate classes seems a state marker especially in patients with later neuroleptic responsive, while lower theta GFS seems a state-related phenomenon and that higher gamma GFS is a trait like phenomenon.
Resumo:
Faciogenital dysplasia or Aarskog-Scott syndrome (AAS) is an X-linked disorder characterized by craniofacial, skeletal, and urogenital malformations and short stature. Mutations in the only known causative gene FGD1 are found in about one-fifth of the cases with the clinical diagnosis of AAS. FGD1 is a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42 via its RhoGEF domain. The Cdc42 pathway is involved in skeletal formation and multiple aspects of neuronal development. We describe a boy with typical AAS and, in addition, unilateral focal polymicrogyria (PMG), a feature hitherto unreported in AAS. Sequencing of the FGD1 gene in the index case and his mother revealed the presence of a novel mutation (1396A>G; M466V), located in the evolutionary conserved alpha-helix 4 of the RhoGEF domain. M466V was not found in healthy family members, in >300 healthy controls and AAS patients, and has not been reported in the literature or mutation databases to date, indicating that this novel missense mutation causes AAS, and possibly PMG. Brain cortex malformations such as PMG could be initiated by mutations in the evolutionary conserved RhoGEF domain of FGD1, by perturbing the signaling via Rho GTPases such as Cdc42 known to cause brain malformation.