123 resultados para Dimuon triggers
Resumo:
It has been suggested that there are several distinct phenotypes of childhood asthma or childhood wheezing. Here, we review the research relating to these phenotypes, with a focus on the methods used to define and validate them. Childhood wheezing disorders manifest themselves in a range of observable (phenotypic) features such as lung function, bronchial responsiveness, atopy and a highly variable time course (prognosis). The underlying causes are not sufficiently understood to define disease entities based on aetiology. Nevertheless, there is a need for a classification that would (i) facilitate research into aetiology and pathophysiology, (ii) allow targeted treatment and preventive measures and (iii) improve the prediction of long-term outcome. Classical attempts to define phenotypes have been one-dimensional, relying on few or single features such as triggers (exclusive viral wheeze vs. multiple trigger wheeze) or time course (early transient wheeze, persistent and late onset wheeze). These definitions are simple but essentially subjective. Recently, a multi-dimensional approach has been adopted. This approach is based on a wide range of features and relies on multivariate methods such as cluster or latent class analysis. Phenotypes identified in this manner are more complex but arguably more objective. Although phenotypes have an undisputed standing in current research on childhood asthma and wheezing, there is confusion about the meaning of the term 'phenotype' causing much circular debate. If phenotypes are meant to represent 'real' underlying disease entities rather than superficial features, there is a need for validation and harmonization of definitions. The multi-dimensional approach allows validation by replication across different populations and may contribute to a more reliable classification of childhood wheezing disorders and to improved precision of research relying on phenotype recognition, particularly in genetics. Ultimately, the underlying pathophysiology and aetiology will need to be understood to properly characterize the diseases causing recurrent wheeze in children.
Resumo:
Severe alcoholic steatohepatitis has a poor prognosis and is characterized by jaundice and signs of liver failure. Its incidence is unknown, but prevalence is around 20% in cohorts of alcoholics undergoing liver biopsy. Diagnosis is established with elevated liver transaminases, neutrophil counts, serum bilirubin, and impaired coagulation and a history of excessive alcohol consumption, and exclusion of other etiologies. Histology is helpful but not mandatory. Prognostic scores include the Maddrey's discriminant function, the model of end-stage liver disease, and the Glasgow Alcoholic Hepatitis Score. Pathophysiology involves hepatic fat storage, increased hepatic uptake of gut-derived endotoxins triggering Kupffer cell activation and release of proinflammatory triggers, induction of cytochrome P4502E1 producing toxic acetaldehyde and reactive oxygen species, and ethanol-mediated hyperhomocysteinemia causing endoplasmic reticulum stress. Treatment includes abstinence, enteral nutrition, corticosteroids, and possibly pentoxifylline. A debate is ongoing whether certain patients with severe alcoholic steatohepatitis could be eligible for liver transplantation.
Resumo:
Migraine is a neurological disorder characterized by an increased individual susceptibility to respond to certain triggers by a propagating wave of neuronal depolarization that culminates in typical migraine headaches. Patients with a patent foramen ovale or any kind of right-to-left shunt are more likely to have migraine; and patients with migraine with aura are more likely to have a patent foramen ovale than patients without migraine. Nonrandomized reports of patent foramen ovale closure in divers, in patients with paradoxical embolism and in migraine patients with ischemic brain lesions have shown an impressive reduction in migraine headaches during follow-up. To date, the only double-blind, randomized controlled trial with a sham procedure in the control arm failed to show any benefit, probably owing to inadequate patient selection and maybe because of a high residual shunt rate. Two other randomized trials continue to enroll patients with migraine with aura and drug-refractory headaches and their results are awaited.
Resumo:
Synthetic biology has shown that the metabolic behavior of mammalian cells can be altered by genetic devices such as epigenetic and hysteretic switches, timers and oscillators, biocomputers, hormone systems and heterologous metabolic shunts. To explore the potential of such devices for therapeutic strategies, we designed a synthetic mammalian circuit to maintain uric acid homeostasis in the bloodstream, disturbance of which is associated with tumor lysis syndrome and gout. This synthetic device consists of a modified Deinococcus radiodurans-derived protein that senses uric acids levels and triggers dose-dependent derepression of a secretion-engineered Aspergillus flavus urate oxidase that eliminates uric acid. In urate oxidase-deficient mice, which develop acute hyperuricemia, the synthetic circuit decreased blood urate concentration to stable sub-pathologic levels in a dose-dependent manner and reduced uric acid crystal deposits in the kidney. Synthetic gene-network devices providing self-sufficient control of pathologic metabolites represent molecular prostheses, which may foster advances in future gene- and cell-based therapies.
Resumo:
The RET (rearranged-during-transfection protein) protooncogene triggers multiple intracellular signaling cascades regulating cell cycle progression and cellular metabolism. We therefore hypothesized that metabolic imaging could allow noninvasive detection of response to the RET inhibitor vandetanib in vivo.
Resumo:
The annexins, a family of Ca(2+)- and lipid-binding proteins, are involved in a range of intracellular processes. Recent findings have implicated annexin A1 in the resealing of plasmalemmal injuries. Here, we demonstrate that another member of the annexin protein family, annexin A6, is also involved in the repair of plasmalemmal lesions induced by a bacterial pore-forming toxin, streptolysin O. An injury-induced elevation in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) triggers plasmalemmal repair. The highly Ca(2+)-sensitive annexin A6 responds faster than annexin A1 to [Ca(2+)](i) elevation. Correspondingly, a limited plasmalemmal injury can be promptly countered by annexin A6 even without the participation of annexin A1. However, its high Ca(2+) sensitivity makes annexin A6 highly amenable to an unproductive binding to the uninjured plasmalemma; during an extensive injury accompanied by a massive elevation in [Ca(2+)](i), its active pool is severely depleted. In contrast, annexin A1 with a much lower Ca(2+) sensitivity is ineffective at the early stages of injury; however, it remains available for the repair even at high [Ca(2+)](i). Our findings highlight the role of the annexins in the process of plasmalemmal repair; a number of annexins with different Ca(2+)-sensitivities provide a cell with the means to react promptly to a limited injury in its early stages and, at the same time, to withstand a sustained injury accompanied by the continuous formation of plasmalemmal lesions.
Resumo:
Background. Several factors are implicated in renal stone formation and peak incidence of renal colic admissions to emergency departments (ED). Little is known about the influence of potential environmental triggers such as lunar gravitational forces. We conducted a retrospective study to test the hypothesis that the incidence of symptomatic renal colics increases at the time of the full and new moon because of increased lunar gravitational forces. Methods. We analysed 1500 patients who attended our ED between 2000 and 2010 because of nephrolithiasis-induced renal colic. The lunar phases were defined as full moon ± 1 day, new moon ± 1 day, and the days in-between as "normal" days. Results. During this 11-year period, 156 cases of acute nephrolithiasis were diagnosed at the time of a full moon and 146 at the time of a new moon (mean of 0.4 per day for both). 1198 cases were diagnosed on "normal" days (mean 0.4 per day). The incidence of nephrolithiasis in peak and other lunar gravitational phases, the circannual variation and the gender-specific analysis showed no statistically significant differences. Conclusion. In this adequate powered longitudinal study, changes in tractive force during the different lunar phases did not influence the incidence of renal colic admissions in emergency department.
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Resumo:
Splanchnic vasodilation triggers the development of the hyperdynamic circulatory syndrome in portal hypertension. Neuropeptide Y (NPY), a sympathetic co-transmitter of norepinephrine, improves contractility in mesenteric arteries of pre-hepatic portal hypertensive rats. Therefore, we investigated the effect of NPY on mesenteric arterial contractility in vitro and in vivo in cirrhotic ascitic rats, as well as the vasoactive pathways involved.
Resumo:
The cannabinoid CB(2) receptor is known to modulate osteoclast function by poorly understood mechanisms. Here, we report that the natural biphenyl neolignan 4'-O-methylhonokiol (MH) is a CB(2) receptor-selective antiosteoclastogenic lead structure (K(i) < 50 nM). Intriguingly, MH triggers a simultaneous G(i) inverse agonist response and a strong CB(2) receptor-dependent increase in intracellular calcium. The most active inverse agonists from a library of MH derivatives inhibited osteoclastogenesis in RANK ligand-stimulated RAW264.7 cells and primary human macrophages. Moreover, these ligands potently inhibited the osteoclastogenic action of endocannabinoids. Our data show that CB(2) receptor-mediated cAMP formation, but not intracellular calcium, is crucially involved in the regulation of osteoclastogenesis, primarily by inhibiting macrophage chemotaxis and TNF-α expression. MH is an easily accessible CB(2) receptor-selective scaffold that exhibits a novel type of functional heterogeneity.
Resumo:
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.
Resumo:
Rhinoviruses are important triggers of pulmonary exacerbations and possible contributors to long-term respiratory morbidity in cystic fibrosis (CF), but mechanisms leading to rhinovirus-induced CF exacerbations are poorly understood. It is hypothesised that there is a deficient innate immune response of the airway epithelium towards rhinovirus infection in CF.
Resumo:
Primary fibroblast cultures of canine cranial (CCL) and caudal (CaCL) cruciate ligaments were stimulated with different apoptosis inducers with or without preincubation of the pancaspase inhibitor zVAD.fmk. In contrast to CaCL fibroblasts, fibroblasts from CCL were significantly more susceptible to apoptosis inducers of the intrinsic pathway like doxorubicin, cisplatin and nitric oxide (NO)-donors and to Fas ligand (FasL), an apoptosis inducer of the death receptor pathway. Apoptotic response to staurosporine and the peroxynitrite donor GEA was similar in both ligament fibroblasts. Stimulation with dexamethasone or TNFalpha could not induce apoptosis in CCL and CaCL fibroblasts, in spite of present TNFR1 and TNFR2 receptors. zVAD.fmk was able to prevent apoptosis in up to 66% of CCL cells when treated with FasL, cisplatin or doxorubicin but it had no effect on NO or peroxynitrite induced apoptosis. In conclusion, differential susceptibility to apoptotic triggers like FasL or NO between cranial and caudal cruciate ligament fibroblasts in vitro may be a reflection of the different susceptibilities to degenerative rupture of the ligament. These findings indicate that a general caspase inhibition does not completely protect canine CCL cells from apoptosis.
Resumo:
Therapeutic over-expression of vascular endothelial growth factor (VEGF) can be used to treat ischemic conditions. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo, which limits its clinical usefulness. The goal herein was to determine the cellular mechanisms by which physiologic and aberrant vessels are induced by over-expression of different VEGF doses in adult skeletal muscle. We took advantage of a well-characterized cell-based platform for controlled gene expression in skeletal muscle. Clonal populations of retrovirally transduced myoblasts were implanted in limb muscles of immunodeficient mice to homogeneously over-express two specific VEGF(164) levels, previously shown to induce physiologic and therapeutic or aberrant angiogenesis, respectively. Three independent and complementary methods (confocal microscopy, vascular casting and 3D-reconstruction of serial semi-thin sections) showed that, at both VEGF doses, angiogenesis took place without sprouting, but rather by intussusception, or vascular splitting. VEGF-induced endothelial proliferation without tip-cell formation caused an initial homogeneous enlargement of pre-existing microvessels, followed by the formation of intravascular transluminal pillars, hallmarks of intussusception. This was associated with increased flow and shear stress, which are potent triggers of intussusception. A similar process of enlargement without sprouting, followed by intussusception, was also induced by VEGF over-expression through a clinically relevant adenoviral gene therapy vector, without the use of transduced cells. Our findings indicate that VEGF over-expression, at doses that have been shown to induce functional benefit, induces vascular growth in skeletal muscle by intussusception rather than sprouting.
Resumo:
Thymic stromal lymphopoietin (TSLP) that is released by epithelial cells upon certain environmental triggers activates cells of the innate and adaptive immune system resulting in a preferential T helper 2 immune response. By releasing eosinophil extracellular traps (EETs), eosinophils achieve an efficient extracellular bacterial killing. Eosinophil extracellular traps release, however, has been observed in both infectious and noninfectious eosinophilic diseases. Here, we aim to investigate whether eosinophils generate functional EETs as a direct response to TSLP, and further to study the extra- and intracellular mechanisms involved in this process as well as TSLP receptor (TSLPR) expression by eosinophils in vitro and in vivo.