39 resultados para Diaphragm.
Resumo:
BACKGROUND In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. METHODS We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. PRINCIPAL FINDINGS All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. CONCLUSION This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body.
Resumo:
In modern medico-legal literature, only a small number of publications deal with fatal injuries from black powder guns. Most of them focus on the morphological features such as intense soot soiling, blast tattooing and burn effects in close-range shots or describe the wound ballistics of spherical lead bullets. Another kind of "unusual" and potentially lethal weapons are handguns destined for firing only blank cartridges such as starter and alarm pistols. The dangerousness of these guns is restricted to very close and contact range shots and results from the gas jet produced by the deflagration of the propellant. The present paper reports on a suicide committed with a muzzle-loading percussion pistol cal. 45. An unusually large stellate entrance wound was located in the precordial region, accompanied by an imprint mark from the ramrod and a faint greenish discoloration (apparently due to the formation of sulfhemoglobin). Autopsy revealed an oversized powder cavity, multiple fractures of the anterior thoracic wall as well as ruptures of the heart, the aorta, the left hepatic lobe and the diaphragm. In total, the zone of mechanical destruction had a diameter of approx. 15 cm. As there was no exit wound and no bullet lodged in the body, the injury was caused exclusively by the inrushing combustion gases of the propellant (black powder) comparable with the gas jet of a blank cartridge gun. In contact shots to ballistic gelatine using the suicide's pistol loaded with black powder but no projectile, the formation of a nearly spherical cavity could be demonstrated by means of a high-speed camera. The extent of the temporary cavity after firing with 5 g of black powder roughly corresponded to the zone of destruction found in the suicide's body.
Resumo:
We report about a lung-on-chip array that mimics the pulmonary parenchymal environment, including the thin, alveolar barrier and the three-dimensional cyclic strain induced by the breathing movements. A micro-diaphragm used to stretch the alveolar barrier is inspired by the in-vivo diaphragm, the main muscle responsible for inspiration. The design of this device aims not only at best reproducing the in-vivo conditions found in the lung parenchyma, but also at making its handling easy and robust. An innovative concept, based on the reversible bonding of the device, is presented that enables to accurately control the concentration of cells cultured on the membrane by easily accessing both sides of the membranes. The functionality of the alveolar barrier could be restored by co-culturing epithelial and endothelial cells that formed tight monolayers on each side of a thin, porous and stretchable membrane. We showed that cyclic stretch significantly affects the permeability properties of epithelial cell layers. Furthermore, we could also demonstrate that the strain influences the metabolic activity and the cytokine secretion of primary human pulmonary alveolar epithelial cells obtained from patients. These results demonstrate the potential of this device and confirm the importance of the mechanical strain induced by the breathing in pulmonary research.
Resumo:
FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.
Resumo:
FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.
Resumo:
Abstract BACKGROUND: The purpose of this paper is to describe the transdiaphragmatic approach to the heart for open CPR in patients that arrest at laparotomy and to present a first case series of patients that have undergone this procedure. METHODS: All patients who had undergone intraperitoneal transdiaphragmatic open CPR between January 1, 2002 and December 31, 2012 were retrieved from the operation registry at Bern University Hospital, Switzerland. Transdiaphragmatic access to the heart is initiated with a 10-cm-long anterocaudal incision in the central tendon of the diaphragm--approximately at 2 o'clock. Internal cardiac compression through the diaphragmatic incision can be performed from both sides of the patient. From the right side of the patient, cardiac massage is performed with the right hand and vice versa. RESULTS: A total of six patients were identified that suffered cardiac arrest during laparotomy with open CPR performed through the transdiaphragmatic approach. Four patients suffered cardiac arrest during orthotopic liver transplantation and two trauma patients suffered cardiac arrest during damage control laparotomy. In three patients, cardiac activity was never reestablished. However, three patients regained a perfusion heart rhythm and two of these survived to the ICU. One patient ultimately survived to discharge. CONCLUSIONS: In patients suffering cardiac arrest during laparotomy, the transdiaphragmatic approach allows for a rapid, technically easy, and almost atraumatic access to the heart, with excellent CPR performance. After this potentially life-saving procedure, pulmonary or surgical site complications are expected to occur much less compared with the conventionally performed emergency department left-sided thoracotomy.
Resumo:
An 8-yr-old male leopard (Panthera pardus) was presented with a 4-day history of lethargy, vomiting, and anorexia. Thoracic and abdominal radiographs revealed a soft-tissue mass cranial to the diaphragm and atypical appearance of the gastric fundus. Esophagoscopy revealed gastric mucosa in the lumen of the esophagus, which confirmed gastroesophageal intussusception. An exploratory celiotomy with manual reduction of the intussusception was performed. Reduction was verified by intraoperative esophagoscopy and gastroscopy. An incisional fundic gastropexy to the left abdominal wall was performed to reduce the chance of a recurrence of the intussusception. No postoperative complications related to the surgery were observed, and the animal resumed eating within 48 hr of surgery. A subsequent recurrence of clinical signs was not noted by the owner.
Resumo:
Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.
Resumo:
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.