84 resultados para Detectors: neutrino
Resumo:
Commercially available LaBr3:5% Ce3+ scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV γ-rays. Here we will show that by co-doping LaBr3:Ce3+ with Sr2+ or Ca2+ the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (1–10 ps) inside the high free charge carrier density parts of the ionization track.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV is evaluated up to NLO in Standard Model couplings. The results apply in the so-called relativistic regime, referring parametrically to a mass M ~ πT, generalizing thereby previous NLO results which only apply in the non-relativistic regime M ≫ πT. The non-relativistic expansion is observed to converge for M ≳ 15T, but the smallness of any loop corrections allows it to be used in practice already for M ≳ 4T. In the latter regime any non-covariant dependence of the differential rate on the spatial momentum is shown to be mild. The loop expansion breaks down in the ultrarelativistic regime M ≪ πT, but after a simple mass resummation it nevertheless extrapolates reasonably well towards a result obtained previously through complete LPM resummation, apparently confirming a strong enhancement of the rate at high temperatures (which facilitates chemical equilibration). When combined with other ingredients the results may help to improve upon the accuracy of leptogenesis computations operating above the electroweak scale.
Resumo:
The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir'e deflectometer. The goal is to determine the gravitational acceleration with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon μ-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of ~ 1–2 μm r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project.
Resumo:
The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and θ23≤π/4 yields a best-fit mixing angle sin2(2θ23)=1.000 and mass splitting |Δm232|=2.44×10−3 eV2/c4. If θ23≥π/4 is assumed, the best-fit mixing angle changes to sin2(2θ23)=0.999 and the mass splitting remains unchanged.
Resumo:
The OPERA neutrino experiment is designed to perform the first observation of neutrino oscillations in direct appearance mode in the νμ→ντ channel, via the detection of the τ-leptons created in charged current ντ interactions. The detector, located in the underground Gran Sasso Laboratory, consists of an emulsion/lead target with an average mass of about 1.2 kt, complemented by electronic detectors. It is exposed to the CERN Neutrinos to Gran Sasso beam, with a baseline of 730 km and a mean energy of 17 GeV. The observation of the first ντ candidate event and the analysis of the 2008-2009 neutrino sample have been reported in previous publications. This work describes substantial improvements in the analysis and in the evaluation of the detection efficiencies and backgrounds using new simulation tools. The analysis is extended to a sub-sample of 2010 and 2011 data, resulting from an electronic detector-based pre-selection, in which an additional ντ candidate has been observed. The significance of the two events in terms of a νμ→ντ oscillation signal is of 2.40 σ.