44 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Images of an object under different illumination are known to provide strong cues about the object surface. A mathematical formalization of how to recover the normal map of such a surface leads to the so-called uncalibrated photometric stereo problem. In the simplest instance, this problem can be reduced to the task of identifying only three parameters: the so-called generalized bas-relief (GBR) ambiguity. The challenge is to find additional general assumptions about the object, that identify these parameters uniquely. Current approaches are not consistent, i.e., they provide different solutions when run multiple times on the same data. To address this limitation, we propose exploiting local diffuse reflectance (LDR) maxima, i.e., points in the scene where the normal vector is parallel to the illumination direction (see Fig. 1). We demonstrate several noteworthy properties of these maxima: a closed-form solution, computational efficiency and GBR consistency. An LDR maximum yields a simple closed-form solution corresponding to a semi-circle in the GBR parameters space (see Fig. 2); because as few as two diffuse maxima in different images identify a unique solution, the identification of the GBR parameters can be achieved very efficiently; finally, the algorithm is consistent as it always returns the same solution given the same data. Our algorithm is also remarkably robust: It can obtain an accurate estimate of the GBR parameters even with extremely high levels of outliers in the detected maxima (up to 80 % of the observations). The method is validated on real data and achieves state-of-the-art results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, despite a large body of evidence in favor of the advantage of an effect-related focus of attention compared with a movement-related focus of attention in motor control and learning, the role of vision in this context remains unclear. Therefore, in a golf-putting study, the relation between attentional focus and gaze behavior (in particular, quiet eye, or QE) was investigated. First, the advantage of an effect-related focus, as well as of a long QE duration, could be replicated. Furthermore, in the online-demanding task of golf putting, high performance was associated with later QE offsets. Most decisively, an interaction between attentional focus and gaze behavior was revealed in such a way that the efficiency of the QE selectively manifested under movement-related focus instructions. As these findings suggest neither additive effects nor a causal chain, an alternative hypothesis is introduced explaining positive QE effects by the inhibition of not-to-be parameterized movement variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a method that synchronizes two video sequences is proposed. Unlike previous methods, which require the existence of correspondences between features tracked in the two sequences, and/or that the cameras are static or jointly moving, the proposed approach does not impose any of these constraints. It works when the cameras move independently, even if different features are tracked in the two sequences. The assumptions underlying the proposed strategy are that the intrinsic parameters of the cameras are known and that two rigid objects, with independent motions on the scene, are visible in both sequences. The relative motion between these objects is used as clue for the synchronization. The extrinsic parameters of the cameras are assumed to be unknown. A new synchronization algorithm for static or jointly moving cameras that see (possibly) different parts of a common rigidly moving object is also proposed. Proof-of-concept experiments that illustrate the performance of these methods are presented, as well as a comparison with a state-of-the-art approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the problem of blind deconvolution. Our analysis is based on the algorithm of Chan and Wong [2] which popularized the use of sparse gradient priors via total variation. We use this algorithm because many methods in the literature are essentially adaptations of this framework. Such algorithm is an iterative alternating energy minimization where at each step either the sharp image or the blur function are reconstructed. Recent work of Levin et al. [14] showed that any algorithm that tries to minimize that same energy would fail, as the desired solution has a higher energy than the no-blur solution, where the sharp image is the blurry input and the blur is a Dirac delta. However, experimentally one can observe that Chan and Wong's algorithm converges to the desired solution even when initialized with the no-blur one. We provide both analysis and experiments to resolve this paradoxical conundrum. We find that both claims are right. The key to understanding how this is possible lies in the details of Chan and Wong's implementation and in how seemingly harmless choices result in dramatic effects. Our analysis reveals that the delayed scaling (normalization) in the iterative step of the blur kernel is fundamental to the convergence of the algorithm. This then results in a procedure that eludes the no-blur solution, despite it being a global minimum of the original energy. We introduce an adaptation of this algorithm and show that, in spite of its extreme simplicity, it is very robust and achieves a performance comparable to the state of the art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of twenty questions with noisy answers, in which we seek to find a target by repeatedly choosing a set, asking an oracle whether the target lies in this set, and obtaining an answer corrupted by noise. Starting with a prior distribution on the target's location, we seek to minimize the expected entropy of the posterior distribution. We formulate this problem as a dynamic program and show that any policy optimizing the one-step expected reduction in entropy is also optimal over the full horizon. Two such Bayes optimal policies are presented: one generalizes the probabilistic bisection policy due to Horstein and the other asks a deterministic set of questions. We study the structural properties of the latter, and illustrate its use in a computer vision application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medical education community is working-across disciplines and across the continuum-to address the current challenges facing the medical education system and to implement strategies to improve educational outcomes. Educational technology offers the promise of addressing these important challenges in ways not previously possible. The authors propose a role for virtual patients (VPs), which they define as multimedia, screen-based interactive patient scenarios. They believe VPs offer capabilities and benefits particularly well suited to addressing the challenges facing medical education. Well-designed, interactive VP-based learning activities can promote the deep learning that is needed to handle the rapid growth in medical knowledge. Clinically oriented learning from VPs can capture intrinsic motivation and promote mastery learning. VPs can also enhance trainees' application of foundational knowledge to promote the development of clinical reasoning, the foundation of medical practice. Although not the entire solution, VPs can support competency-based education. The data created by the use of VPs can serve as the basis for multi-institutional research that will enable the medical education community both to better understand the effectiveness of educational interventions and to measure progress toward an improved system of medical education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a weakly supervised method to arrange images of a given category based on the relative pose between the camera and the object in the scene. Relative poses are points on a sphere centered at the object in a given canonical pose, which we call object viewpoints. Our method builds a graph on this sphere by assigning images with similar viewpoint to the same node and by connecting nodes if they are related by a small rotation. The key idea is to exploit a large unlabeled dataset to validate the likelihood of dominant 3D planes of the object geometry. A number of 3D plane hypotheses are evaluated by applying small 3D rotations to each hypothesis and by measuring how well the deformed images match other images in the dataset. Correct hypotheses will result in deformed images that correspond to plausible views of the object, and thus will likely match well other images in the same category. The identified 3D planes are then used to compute affinities between images related by a change of viewpoint. We then use the affinities to build a view graph via a greedy method and the maximum spanning tree.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.