40 resultados para Data structures (Computer science)
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
In this work, we propose a novel network coding enabled NDN architecture for the delivery of scalable video. Our scheme utilizes network coding in order to address the problem that arises in the original NDN protocol, where optimal use of the bandwidth and caching resources necessitates the coordination of the forwarding decisions. To optimize the performance of the proposed network coding based NDN protocol and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interest messages sent by clients and intermediate nodes. This algorithm guarantees that the achieved flow of Data objects will maximize the average quality of the video delivered to the client population. To support the handling of Interest messages and Data objects when intermediate nodes perform network coding, we modify the standard NDN protocol and introduce the use of Bloom filters, which store efficiently additional information about the Interest messages and Data objects. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme performs very close to the optimal performance
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
It is a challenge to measure the impact of releasing data to the public since the effects may not be directly linked to particular open data activities or substantial impact may only occur several years after publishing the data. This paper proposes a framework to assess the impact of releasing open data by applying the Social Return on Investment (SROI) approach. SROI was developed for organizations intended to generate social and environmental benefits thus fitting the purpose of most open data initiatives. We link the four steps of SROI (input, output, outcome, impact) with the 14 high-value data categories of the G8 Open Data Charter to create a matrix of open data examples, activities, and impacts in each of the data categories. This Impact Monitoring Framework helps data providers to navigate the impact space of open data laying out the conceptual basis for further research.
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
Project justification is regarded as one of the major methodological deficits in Data Warehousing practice. As reasons for applying inappropriate methods, performing incomplete evaluations, or even entirely omitting justifications, the special nature of Data Warehousing benefits and the large portion of infrastructure-related activities are stated. In this paper, the economic justification of Data Warehousing projects is analyzed, and first results from a large academiaindustry collaboration project in the field of non-technical issues of Data Warehousing are presented. As conceptual foundations, the role of the Data Warehouse system in corporate application architectures is analyzed, and the specific properties of Data Warehousing projects are discussed. Based on an applicability analysis of traditional approaches to economic IT project justification, basic steps and responsibilities for the justification of Data Warehousing projects are derived.
Resumo:
Abstract Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust parsing, error recovery, lexical analysis, and rapid development of parsers for data extraction. An island grammar precisely defines only a subset of a language syntax (islands), while the rest of the syntax (water) is defined imprecisely. Usually water is defined as the negation of islands. Albeit simple, such a definition of water is naive and impedes composition of islands. When developing an island grammar, sooner or later a language engineer has to create water tailored to each individual island. Such an approach is fragile, because water can change with any change of a grammar. It is time-consuming, because water is defined manually by an engineer and not automatically. Finally, an island surrounded by water cannot be reused because water has to be defined for every grammar individually. In this paper we propose a new technique of island parsing —- bounded seas. Bounded seas are composable, robust, reusable and easy to use because island-specific water is created automatically. Our work focuses on applications of island parsing to data extraction from source code. We have integrated bounded seas into a parser combinator framework as a demonstration of their composability and reusability.