88 resultados para DILATED CARDIOMYOPATHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implantable Cardioverter Defibrillator (ICD) implantation is the only established therapy for primary or secondary prevention of sudden cardiac death in patients with Hypertrophic Cardiomyopathy (HCM). Ineffectiveness of shock therapy for the termination of potentially fatal ventricular arrhythmias in ICD recipients is rare in the presence of appropriate arrhythmia detection by the device. We report the case of a 48-year-old woman with HCM and a single chamber ICD, who received five inefficient high-energy (35 Joules) shocks for the termination of an appropriately detected episode of Ventricular Tachycardia (VT). The episode was safely terminated with a subsequent application of Antitachycardia Pacing (ATP) by the device. At the following ICD control, an acceptable defibrillation threshold was detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Myocardial contrast echocardiography (MCE) is able to measure in vivo relative blood volume (rBV, i.e., capillary density), and its exchange frequency b, the constituents of myo-cardial blood flow (MBF, ml min-1 g-1). This study aimed to assess, by MCE, whether left ventricular hypertrophy (LVH) in hypertrophic cardiomyopathy (HCM) can be differentiated from LVH in triathletes (athlete's heart, AH) or from hypertensive heart disease patients (HHD). METHODS: Sixty individuals, matched for age (33 +/- 10 years) and gender, and subdivided into four groups (n = 15) were examined: HCM, AH, HHD and a group of sedentary individuals without LVH (S). rBV (ml ml-1), b (min-1) and MBF, at rest and during adenosine-induced hyperaemia, were derived by MCE in mid septal, lateral and inferior regions. The ratio of MBF during hyperaemia and MBF at rest yielded myocardial blood flow reserve (MBFR). RESULTS: Septal wall rBV at rest was lower in HCM (0.084 +/- 0.023 ml ml-1) than in AH (0.151 +/- 0.024 ml ml-1, p <0.01) and in S (0.129 +/- 0.026 ml ml-1, p <0.01), but was similar to HHD (0.097 +/- 0.016 ml ml-1). Conversely, MBFR was lowest in HCM (1.67 +/- 0.93), followed by HHD (2.8 +/- 0.93, p <0.01), by S (3.36 +/- 1.03, p <0.001) and by AH (4.74 +/- 1.46, p <0.0001). At rest, rBV <0.11 ml ml-1 accurately distinguished between HCM and AH (sensitivity 99%, specificity 99%), similarly MBFR < or =1.8 helped to distinguish between HCM and HHD (sensitivity 100%, specificity 77%). CONCLUSIONS: rBV at rest, most accurately distinguishes between pathological LVH due to HCM and physiological, endurance-exercise induced LVH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interventional treatment of hypertrophic obstructive cardiomyopathy has considerably developed and primary surgical approach is nowadays considered for a minority of patients with insufficient relief of obstruction following catheter intervention. We present the history of a patient who underwent alcohol ablation and developed a life-threatening ventricular septal defect consecutively to a large myocardial infarction because of alcohol injection into the LAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

111 Domestic Shorthair cats with idiopathic hypertrophic cardiomyopathy were reviewed retrospectively. Two-dimensional echocardiography was used to classify cases in 6 established phenotypes. Hypertrophy was diffuse in 61 % of cats and involved major portions of the ventricular septum and the left ventricular free wall (phenotype D). In the remaining cats, distribution of hypertrophy was more segmental and was identified on the papillary muscles exclusively (phenotype A, 6 %), on the anterior and basal portion of the ventricular septum (phenotype B, 12 %), on the entire septum (phenotype C, 14 %), or on the left ventricular free wall (phenotype E, 7 %). Echocardiographic characteristics and clinical findings were determined for each phenotype to study the correlation between distribution of hypertrophy and clinical implications. 31 cats demonstrated systolic anterior motion of the mitral valve, 75 % of them belonged to phenotype C of hypertrophy. Left ventricular-outflow turbulences were identified more frequently with patterns of hypertrophy involving the ventricular septum (65.5 %), while prevalence of mitral regurgitation was higher when hypertrophy included the papillary muscles (phenotypes A and E, 85 % and 87 %, respectively). Left atrial dilatation occurred more frequently when hypertrophy was diffuse or confined to the left ventricular free wall (61 % of cats with phenotype D or E) rather than to the ventricular septum (31 % of cats with phenotype B or C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM To determine the relation between the extent and distribution of left ventricular hypertrophy and the degree of disturbance of regional relaxation and global left ventricular filling. METHODS Regional wall thickness (rWT) was measured in eight myocardial regions in 17 patients with hypertrophic cardiomyopathy, 12 patients with hypertensive heart disease, and 10 age matched normal subjects, and an asymmetry index calculated. Regional relaxation was assessed in these eight regions using regional isovolumetric relaxation time (rIVRT) and early to late peak filling velocity ratio (rE/A) derived from Doppler tissue imaging. Asynchrony of rIVRT was calculated. Doppler left ventricular filling indices were assessed using the isovolumetric relaxation time, the deceleration time of early diastolic filling (E-DT), and the E/A ratio. RESULTS There was a correlation between rWT and both rIVRT and rE/A in the two types of heart disease (hypertrophic cardiomyopathy: r = 0.47, p < 0.0001 for rIVRT; r = -0.20, p < 0.05 for rE/A; hypertensive heart disease: r = 0.21, p < 0.05 for rIVRT; r = -0.30, p = 0.003 for rE/A). The degree of left ventricular asymmetry was related to prolonged E-DT (r = 0. 50, p = 0.001) and increased asynchrony (r = 0.42, p = 0.002) in all patients combined, but not within individual groups. Asynchrony itself was associated with decreased E/A (r = -0.39, p = 0.01) and protracted E-DT (r = 0.69, p < 0.0001) and isovolumetric relaxation time (r = 0.51, p = 0.001) in all patients. These correlations were still significant for E-DT in hypertrophic cardiomyopathy (r = 0.56, p = 0.02) and hypertensive heart disease (r = 0.59, p < 0.05) and for isovolumetric relaxation time in non-obstructive hypertrophic cardiomyopathy (n = 8, r = 0.87, p = 0.005). CONCLUSIONS Non-invasive ultrasonographic examination of the left ventricle shows that in both hypertrophic cardiomyopathy and hypertensive heart disease, the local extent of left ventricular hypertrophy is associated with regional left ventricular relaxation abnormalities. Asymmetrical distribution of left ventricular hypertrophy is indirectly related to global left ventricular early filling abnormalities through regional asynchrony of left ventricular relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND -The value of standard two-dimensional transthoracic echocardiographic (TTE) parameters for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is controversial. METHODS AND RESULTS -We investigated the impact of right ventricular fractional area change (FAC) and tricuspid annulus plane systolic excursion (TAPSE) for prediction of major adverse cardiovascular events (MACE) defined as the occurrence of cardiac death, heart transplantation, survived sudden cardiac death, ventricular fibrillation, sustained ventricular tachycardia or arrhythmogenic syncope. Among 70 patients who fulfilled the 2010 ARVC/D Task Force Criteria and underwent baseline TTE, 37 (53%) patients experienced a MACE during a median follow-up period of 5.3 (IQR 1.8-9.8) years. Average values for FAC, TAPSE, and TAPSE indexed to body surface area (BSA) decreased over time (p=0.03 for FAC, p=0.03 for TAPSE and p=0.01 for TAPSE/BSA, each vs. baseline). In contrast, median right ventricular end-diastolic area (RVEDA) increased (p=0.001 vs. baseline). Based on the results of Kaplan-Meier estimates, the time between baseline TTE and experiencing MACE was significantly shorter for patients with FAC <23% (p<0.001), TAPSE <17mm (p=0.02) or right atrial (RA) short axis/BSA ≥25mm/m(2) (p=0.04) at baseline. A reduced FAC constituted the strongest predictor of MACE (hazard ratio 1.08 per 1% decrease; 95% confidence interval 1.04-1.12; p<0.001) on bivariable analysis. CONCLUSIONS -This long-term observational study indicates that TAPSE and dilation of right-sided cardiac chambers are associated with an increased risk for MACE in ARVC/D patients with advanced disease and a high risk for adverse events. However, FAC is the strongest echocardiographic predictor of adverse outcome in these patients. Our data advocate a role for TTE in risk stratification in patients with ARVC/D, although our results may not be generalizable to lower risk ARVC/D cohorts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the electrophysiologic (EP) study for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy is controversial. We investigated the role of inducible sustained monomorphic ventricular tachycardia (SMVT) for the prediction of an adverse outcome (AO), defined as the occurrence of cardiac death, heart transplantation, sudden cardiac death, ventricular fibrillation, ventricular tachycardia with hemodynamic compromise or syncope. Of 62 patients who fulfilled the 2010 Arrhythmogenic Right Ventricular Cardiomyopathy Task Force criteria and underwent an EP study, 30 (48%) experienced an adverse outcome during a median follow-up of 9.8 years. SMVT was inducible in 34 patients (55%), 22 (65%) of whom had an adverse outcome. In contrast, in 28 patients without inducible SMVT, 8 (29%) had an adverse outcome. Kaplan-Meier analysis showed an event-free survival benefit for patients without inducible SMVT (log-rank p = 0.008) with a cumulative survival free of an adverse outcome of 72% (95% confidence interval [CI] 56% to 92%) in the group without inducible SMVT compared to 26% (95% CI 14% to 50%) in the other group after 10 years. The inducibility of SMVT during the EP study (hazard ratio [HR] 2.99, 95% CI 1.23 to 7.27), nonadherence (HR 2.74, 95% CI 1.3 to 5.77), and heart failure New York Heart Association functional class II and III (HR 2.25, 95% CI 1.04 to 4.87) were associated with an adverse outcome on univariate Cox regression analysis. The inducibility of SMVT (HR 2.52, 95% CI 1.03 to 6.16, p = 0.043) and nonadherence (HR 2.34, 95% CI 1.1 to 4.99, p = 0.028) remained as significant predictors on multivariate analysis. This long-term observational data suggest that SMVT inducibility during EP study might predict an adverse outcome in patients with arrhythmogenic right ventricular cardiomyopathy, advocating a role for EP study in risk stratification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac dysfunction is frequently observed in patients with cirrhosis, and has long been linked to the direct toxic effect of alcohol. Cirrhotic cardiomyopathy (CCM) has recently been identified as an entity regardless of the cirrhosis etiology. Increased cardiac output due to hyperdynamic circulation is a pathophysiological hallmark of the disease. The underlying mechanisms involved in pathogenesis of CCM are complex and involve various neurohumoral and cellular pathways, including the impaired β-receptor and calcium signaling, altered cardiomyocyte membrane physiology, elevated sympathetic nervous tone and increased activity of vasodilatory pathways predominantly through the actions of nitric oxide, carbon monoxide and endocannabinoids. The main clinical features of CCM include attenuated systolic contractility in response to physiologic or pharmacologic strain, diastolic dysfunction, electrical conductance abnormalities and chronotropic incompetence. Particularly the diastolic dysfunction with impaired ventricular relaxation and ventricular filling is a prominent feature of CCM. The underlying mechanism of diastolic dysfunction in cirrhosis is likely due to the increased myocardial wall stiffness caused by myocardial hypertrophy, fibrosis and subendothelial edema, subsequently resulting in high filling pressures of the left ventricle and atrium. Currently, no specific treatment exists for CCM. The liver transplantation is the only established effective therapy for patients with end-stage liver disease and associated cardiac failure. Liver transplantation has been shown to reverse systolic and diastolic dysfunction and the prolonged QT interval after transplantation. Here, we review the pathophysiological basis and clinical features of cirrhotic cardiomyopathy, and discuss currently available limited therapeutic options.