38 resultados para DIFFERENT DOPING LEVELS
Resumo:
Introduction The purpose of this paper is to present the technical specifications of the Forensic Reference Phantom (FRP), to test its behavior relative to organic test materials, and discuss potential applications of the phantom in forensic radiology. Materials and method The FRP prototype is made of synthetic materials designed to simulate the computed tomography (CT) attenuation of water. It has six bore holes that accommodate multiuse containers. These containers were filled with test materials and scanned at 80 kVp, 120 kVp, and 140 kVp. X-ray attenuation was measured by two readers. Intra- and inter-reader reliability was assessed using the intra-class correlation coefficient (ICC). Significance levels between mean CT numbers at 80 kVp, 120 kVp, and 140 kVp were assessed with the Friedman-test. The T-test was used to assess significance levels between the FRP and water. Results Overall mean CT numbers ranged from −3.0–3.7HU for the FRP; −1000.3–−993.5HU for air; −157.7– −108.1HU for oil; 35.5–42.0HU for musle tissue; and 1301.5–2354.8HU for cortical bone. Inter-reader and intra-reader reliability were excellent (ICC>0.994; and ICC=0.999 respectively). CT numbers were significantly different at different energy levels. There was no significant difference between the attenuation of the FRP and water. Conclusions The FRP is a new tool for quality assurance and research in forensic radiology. The mean CT attenuation of the FRP is equivalent to water. The phantom can be scanned during routine post-mortem CT to assess the composition of unidentified objects. In addition, the FRP may be used to investigate new imaging algorithms and scan protocols in forensic radiology.
Resumo:
Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.
Resumo:
Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive 11CO2, we demonstrate that root-attacked maize plants allocate more new 11C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem-borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root-attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore-induced carbon reallocation needs to be taken into account when studying plant-mediated interactions between herbivores.
Resumo:
Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.
Resumo:
Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.
Resumo:
The Socio-Economic Atlas of Kenya is the first of its kind to offer high-resolution spatial depictions and analyses of data collected in the 2009 Kenya Population and Housing Census . The combination of geographic and socio-eco - nomic data enables policymakers at all levels, development experts, and other interested readers to gain a spatial understanding of dynamics affecting Kenya. Where is the informal economic sector most prominent? Which areas have adequate water and sanitation? Where is population growth being slowed effectively? How do education levels vary throughout the country? And where are poverty rates lowest? Answers to questions such as these, grouped into seven broad themes, are visually illustrated on high-resolution maps. By supplying precise information at the sub-location level and summarizing it at the county level, the atlas facilitates better planning that accounts for local contexts and needs. It is a valuable decision-support tool for government institutions at different administrative levels, educational institutions, and others. Three organizations – two in Kenya and one in Switzerland – worked together to create the atlas: the Kenya National Bureau of Statistics (KNBS), the Nanyuki-based Centre for Training and Integrated Research in ASAL Development (CETRAD), and the Centre for Development and Environment (CDE) at the University of Bern. Close cooperation between KNBS, CETRAD, and CDE maximized synergies and knowledge exchange.
Resumo:
Objective Homeopathic globules are commonly used in clinical practice, while research focuses on liquid potencies. Sequential dilution and succussion in their production process has been proposed to change the physico-chemical properties of the solvent(s). It has been reported that aqueous potencies of various starting materials showed significant differences in ultraviolet light transmission compared to controls and between different dilution levels. The aim of the present study was to repeat and expand these experiments to homeopathic globules. Methods Globules were specially produced for this study by Spagyros AG (Gümligen, Switzerland) from 6 starting materials (Aconitum napellus, Atropa belladonna, phosphorus, sulfur, Apis mellifica, quartz) and for 6 dilution levels (6x, 12x, 30c, 200c, 200CF (centesimal discontinuous fluxion), 10,000CF). Native globules and globules impregnated with solvents were used as controls. Globules were dissolved in ultrapure water, and absorbance in the ultraviolet range was measured. The average absorbance from 200 to 340 nm was calculated and corrected for differences between measurement days and instrumental drift. Results Statistically significant differences were found for A. napellus, sulfur, and A. mellifica when normalized average absorbance of the various dilution levels from the same starting material (including control and solvent control globules) was compared. Additionally, absorbance within dilution levels was compared among the various starting materials. Statistically significant differences were found among 30c, 200c and 200CF dilutions. Conclusion This study has expanded previous findings from aqueous potencies to globules and may indicate that characteristics of aqueous high dilutions may be preserved and detectable in dissolved globules.
Resumo:
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans.