157 resultados para DENTIN ABLATION
Resumo:
Persistent atrial fibrillation (AF) ablation may lead to partial disconnection of the coronary sinus (CS). As a result, disparate activation sequences of the local CS versus contiguous left atrium (LA) may be observed during atrial tachycardia (AT). We aimed to evaluate the prevalence of this phenomenon and its impact on activation mapping.
Resumo:
Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations.
Resumo:
AIMS: The experience of using radiofrequency ablation (RFA) for the treatment of arrhythmias in children and adolescents is still limited. This study aimed to review the most recent results of RF ablation in children and adolescents in a highly experienced centre with access to both conventional techniques and non-fluoroscopic electroanatomic mapping (CARTO). METHODS AND RESULTS: A total of 154 consecutive patients younger than 19 years treated with RFA during the period 2000-04 were included. Numbers (%) or median (quartiles) are reported. Age was 15 (12-17) years, 70 (45%) were males. Five patients (3%) had congenital heart disease. RFA was successful in 147/154 patients (95%). Arrhythmia recurrence occurred in 11 patients (7%). Procedure time was 55 (35-90) min and fluoroscopy time was 8.8 (4-19) min. Number of RF applications was 4 (2-10) and number of RF applications >20 s was 2 (1-7). One patient (0.7%) had complicating high-grade atrioventricular block. CARTO was used in 18 RF ablation procedures (11%) performed in 15 patients. CONCLUSION: RF ablation can be undertaken in children and adolescents with a high success rate, few recurrences and complications, very short procedure times, and acceptable fluoroscopy times. Non-fluoroscopic electroanatomic mapping is helpful in selected patients.
Resumo:
BACKGROUND: Current concepts of catheter ablation for atrial fibrillation (AF) commonly use three-dimensional (3D) reconstructions of the left atrium (LA) for orientation, catheter navigation, and ablation line placement. OBJECTIVES: The purpose of this study was to compare the 3D electroanatomic reconstruction (Carto) of the LA, pulmonary veins (PVs), and esophagus with the true anatomy displayed on multislice computed tomography (CT). METHODS: In this prospective study, 100 patients undergoing AF catheter ablation underwent contrast-enhanced spiral CT scan with barium swallow and subsequent multiplanar and 3D reconstructions. Using Carto, circumferential plus linear LA lesions were placed. The esophagus was tagged and integrated into the Carto map. RESULTS: Compared with the true anatomy on CT, the electroanatomic reconstruction accurately displayed the true distance between the lower PVs; the distances between left upper PV, left lower PV, right lower PV, and center of the esophagus; the longitudinal diameter of the encircling line around the funnel of the left PVs; and the length of the mitral isthmus line. Only the distances between the upper PVs, the distance between the right upper PV and esophagus, and the diameter of the right encircling line were significantly shorter on the electroanatomic reconstructions. Furthermore, electroanatomic tagging of the esophagus reliably visualized the true anatomic relationship to the LA. On multiple tagging and repeated CT scans, the LA and esophagus showed a stable anatomic relationship, without relevant sideward shifting of the esophagus. CONCLUSION: Electroanatomic reconstruction can display with high accuracy the true 3D anatomy of the LA and PVs in most of the regions of interest for AF catheter ablation. In addition, Carto was able to visualize the true anatomic relationship between the esophagus and LA. Both structures showed a stable anatomic relationship on Carto and CT without relevant sideward shifting of the esophagus.