231 resultados para Cricoids cartilage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was our aim to investigate the gadolinium diethylenetriaminepentaacetate (Gd-DTPA(2-) ) enhancement kinetics in the menisci of the knee joint over a prolonged period of time. Six asymptomatic volunteers (four men and two women; mean age, 25 ± 2.4 years) were enrolled. Sagittal, T(1) -weighted, spin-echo MR sequences of the right knee joint were obtained at 3 T. Imaging was performed before (baseline), 1 h after and in half-hour intervals up to 9 h after the intravenous administration of 0.2 mmol/kg of Gd-DTPA(2-) . To measure the rates of contrast enhancement relative to the baseline, regions of interest that covered the anterior and posterior horns of the medial and lateral meniscus were defined on each of two adjacent sections, and enhancement curves were constructed. An enhancement peak between 2.5 and 4.5 h after Gd-DTPA(2-) administration was observed, and analysis of variance also revealed no significant difference (p=0.94), in terms of enhancement, within this time interval. Pair-wise, post hoc testing also revealed no significant differences between 2.5 and 3, 3 and 3.5, 3.5 and 4, and 4 and 4.5 h post Gd-DTPA(2-) application. Our preliminary data therefore suggest that the time window suitable for a dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like T(1) mapping of the menisci is relatively short, and lies between 2.5 and 4.5 h after Gd-DTPA(2-) injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correction of prominent ears is a common plastic surgical procedure. We introduced a new non-invasive laser-assisted cartilage reshaping (LACR) technique as an alternative to invasive surgical otoplasty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to explore the sensitivity and robustness of T2 mapping in the detection and quantification of early degenerative cartilage changes at the patella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the MANKIN and OARSI cartilage histopathology assessment systems using human articular cartilage from a large number of donors across the adult age spectrum representing all levels of cartilage degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The purpose of the present study was to investigate the radial distribution patterns of cartilage degeneration in dysplastic hips at different stages of secondary osteoarthritis (OA) by using radial delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and to assess whether pre-contrast measurements are necessary. Methods Thirty-five hips in 21 subjects (mean age ± SD, 27.6 ± 10.8 years) with acetabular dysplasia (lateral CE angle < 25°) were studied. Severity of OA was assessed on radiographs using Tönnis grading. Pre- (T1pre) and post-contrast T1 (T1Gd) values were measured at 7 sub-regions on radial reformatted slices acquired from a 3-dimensional (3D) T1 mapping sequence using a 1.5 T MR scanner. Values of radial T1pre, T1Gd and ΔR1 (1/T1Gd - 1/T1pre) of subgroups with different severity of OA were compared to those of the subgroup without OA using nonparametric tests, and bivariate linear Pearson correlations between radial T1Gd and ΔR1 were analyzed for each subgroup. Results Compared to the subgroup without OA, the subgroup with mild OA was observed with a significant decrease in T1Gd in the anterosuperior to superior sub-regions (mean, 476 ~ 507 ms, p = 0.026 ~ 0.042) and a significant increase in ΔR1 in the anterosuperior to superoposterior and posterior sub-regions (mean, 0.93 ~ 1.37 s-1, p = 0.012 ~ 0.042). The subgroup with moderate to severe OA was observed with a significant overall decrease in T1Gd (mean, 404 ~ 452 ms, p = 0.001 ~ 0.020) and an increase in ΔR1 (mean, 1.17 ~1.69 s-1, p = 0.001 ~ 0.020). High correlations were observed between radial T1Gd and ΔR1 for all subgroups (r = −0.869 ~ −0.944, p < 0.001). Conclusions Radial dGEMRIC without pre-contrast measurements is useful for evaluating different patterns of cartilage degeneration in the entire hip joint of patients with hip dysplasia, particularly for those in early stages of secondary OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare four different implantation modalities for the repair of superficial osteochondral defects in a caprine model using autologous, scaffold-free, engineered cartilage constructs, and to describe the short-term outcome of successfully implanted constructs. METHODS: Scaffold-free, autologous cartilage constructs were implanted within superficial osteochondral defects created in the stifle joints of nine adult goats. The implants were distributed between four 6-mm-diameter superficial osteochondral defects created in the trochlea femoris and secured in the defect using a covering periosteal flap (PF) alone or in combination with adhesives (platelet-rich plasma (PRP) or fibrin), or using PRP alone. Eight weeks after implantation surgery, the animals were killed. The defect sites were excised and subjected to macroscopic and histopathologic analyses. RESULTS: At 8 weeks, implants that had been held in place exclusively with a PF were well integrated both laterally and basally. The repair tissue manifested an architecture similar to that of hyaline articular cartilage. However, most of the implants that had been glued in place in the absence of a PF were lost during the initial 4-week phase of restricted joint movement. The use of human fibrin glue (FG) led to massive cell infiltration of the subchondral bone. CONCLUSIONS: The implantation of autologous, scaffold-free, engineered cartilage constructs might best be performed beneath a PF without the use of tissue adhesives. Successfully implanted constructs showed hyaline-like characteristics in adult goats within 2 months. Long-term animal studies and pilot clinical trials are now needed to evaluate the efficacy of this treatment strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage has poor reparative capacities, and once damaged cartilage lesions remain chronic and can lead to osteoarthritis. Over the last decade, several innovative therapies have been introduced to promote the regeneration of articular cartilage while sustaining sufficient mechanical stress and permitting a pain free motion. An important measure of outcome is the morphological characterization of the repair tissue in order to allow for cross-study evaluation. The International Cartilage Repair Society has developed a analogue visual scale to quantify repair tissue, which is described in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pain in the joint is often due to cartilage degeneration and represents a serious medical problem affecting people of all ages. Although many, mostly surgical techniques, are currently employed to treat cartilage lesions, none has given satisfactory results in the long term. Recent advances in biology and material science have brought tissue engineering to the forefront of new cartilage repair techniques. The combination of autologous cells, specifically designed scaffolds, bioreactors, mechanical stimulations and growth factors together with the knowledge that underlies the principles of cell biology offers promising avenues for cartilage tissue regeneration. The present review explores basic biology mechanisms for cartilage reconstruction and summarizes the advances in the tissue engineering approaches. Furthermore, the limits of the new methods and their potential application in the osteoarthritic conditions are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated whether expanded goat chondrocytes have the capacity to generate cartilaginous tissues with biochemical and biomechanical properties improving with time in culture. Goat chondrocytes were expanded in monolayer with or without combinations of FGF-2, TGF-beta1, and PDGFbb, and the postexpansion chondrogenic capacity assessed in pellet cultures. Expanded chondrocytes were also cultured for up to 6 weeks in HYAFF-M nonwoven meshes or Polyactive foams, and the resulting cartilaginous tissues were assessed histologically, biochemically, and biomechanically. Supplementation of the expansion medium with FGF-2 increased the proliferation rate of goat chondrocytes and enhanced their postexpansion chondrogenic capacity. FGF-2-expanded chondrocytes seeded in HYAFF-M or Polyactive scaffolds formed cartilaginous tissues with wet weight, glycosaminoglycan, and collagen content, increasing from 2 days to 6 weeks culture (up to respectively 2-, 8-, and 41-fold). Equilibrium and dynamic stiffness measured in HYAFF M-based constructs also increased with time, up to, respectively, 1.3- and 16-fold. This study demonstrates the feasibility to engineer goat cartilaginous tissues at different stages of development by varying culture time, and thus opens the possibility to test the effect of maturation stage of engineered cartilage on the outcome of cartilage repair in orthotopic goat models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To perform baseline T(2) mapping of the hips of healthy volunteers, focusing on topographic variation, because no detailed study has involved hips. T(2) mapping is a quantitative magnetic resonance imaging (MRI) technique that evaluates cartilage matrix components. MATERIALS AND METHODS: Hips of 12 healthy adults (six men and six women; mean age = 29.5 +/- 4.9 years) were studied with a 3.0-Tesla MRI system. T(2) measurement in the oblique-coronal plane used a multi-spin-echo (MSE) sequence. Femoral cartilage was divided into 12 radial sections; acetabular cartilage was divided into six radial sections, and each section was divided into two layers representing the superficial and deep halves of the cartilage. T(2) of these sections and layers were measured. RESULTS: Femoral cartilage T(2) was the shortest (-20 degrees to 20 degrees and -10 degrees to 10 degrees , superficial and deep layers), with an increase near the magic angle (54.7 degrees ). Acetabular cartilage T(2) in both layers was shorter in the periphery than the other parts, especially at 20 degrees to 30 degrees . There were no significant differences in T(2) between right and left hips or between men and women. CONCLUSION: Topographic variation exists in hip cartilage T(2) in young, healthy adults. These findings should be taken into account when T(2) mapping is applied to patients with degenerative cartilage. J. Magn. Reson. Imaging 2007;26:165-171. (c) 2007 Wiley-Liss, Inc.