41 resultados para Credit default swap
Resumo:
Recently, many studies about a network active during rest and deactivated during tasks emerged in the literature: the default mode network (DMN). Spatial and temporal DMN features are important markers for psychiatric diseases. Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects. From these findings, the conclusion can be drawn that an increase in resting state DMN activity may go along with an increase in theta power in high-load WM conditions. We followed this hypothesis in a study on 17 healthy subjects performing a visual Sternberg WM task. The DMN was obtained by a BOLD-ICA approach and its dynamics represented by the percent-strength during pre-stimulus periods. DMN dynamics were temporally correlated with EEG theta spectral power from retention intervals. This so-called covariance mapping yielded the spatial distribution of the theta EEG fluctuations associated with the dynamics of the DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention. However, load-dependent correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance during later retention. Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over the course of the retention period. Since both, WM performance and DMN activity, are markers of mental health, our results could be important for further investigations of psychiatric populations.
Resumo:
Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.
Resumo:
Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.