56 resultados para Covariance
Resumo:
INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.
Resumo:
Data assimilation methods used for transient atmospheric state estimations in paleoclimatology such as covariance-based approaches, analogue techniques and nudging are briefly introduced. With applications differing widely, a plurality of approaches appears to be the logical way forward.
Resumo:
Recently, a lot of effort has been spent in the efficient computation of kriging predictors when observations are assimilated sequentially. In particular, kriging update formulae enabling significant computational savings were derived. Taking advantage of the previous kriging mean and variance computations helps avoiding a costly matrix inversion when adding one observation to the TeX already available ones. In addition to traditional update formulae taking into account a single new observation, Emery (2009) proposed formulae for the batch-sequential case, i.e. when TeX new observations are simultaneously assimilated. However, the kriging variance and covariance formulae given in Emery (2009) for the batch-sequential case are not correct. In this paper, we fix this issue and establish correct expressions for updated kriging variances and covariances when assimilating observations in parallel. An application in sequential conditional simulation finally shows that coupling update and residual substitution approaches may enable significant speed-ups.
Resumo:
Let us consider a large set of candidate parameter fields, such as hydraulic conductivity maps, on which we can run an accurate forward flow and transport simulation. We address the issue of rapidly identifying a subset of candidates whose response best match a reference response curve. In order to keep the number of calls to the accurate flow simulator computationally tractable, a recent distance-based approach relying on fast proxy simulations is revisited, and turned into a non-stationary kriging method where the covariance kernel is obtained by combining a classical kernel with the proxy. Once the accurate simulator has been run for an initial subset of parameter fields and a kriging metamodel has been inferred, the predictive distributions of misfits for the remaining parameter fields can be used as a guide to select candidate parameter fields in a sequential way. The proposed algorithm, Proxy-based Kriging for Sequential Inversion (ProKSI), relies on a variant of the Expected Improvement, a popular criterion for kriging-based global optimization. A statistical benchmark of ProKSI’s performances illustrates the efficiency and the robustness of the approach when using different kinds of proxies.
Resumo:
In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.
Resumo:
Responses of many real-world problems can only be evaluated perturbed by noise. In order to make an efficient optimization of these problems possible, intelligent optimization strategies successfully coping with noisy evaluations are required. In this article, a comprehensive review of existing kriging-based methods for the optimization of noisy functions is provided. In summary, ten methods for choosing the sequential samples are described using a unified formalism. They are compared on analytical benchmark problems, whereby the usual assumption of homoscedastic Gaussian noise made in the underlying models is meet. Different problem configurations (noise level, maximum number of observations, initial number of observations) and setups (covariance functions, budget, initial sample size) are considered. It is found that the choices of the initial sample size and the covariance function are not critical. The choice of the method, however, can result in significant differences in the performance. In particular, the three most intuitive criteria are found as poor alternatives. Although no criterion is found consistently more efficient than the others, two specialized methods appear more robust on average.
Resumo:
Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.
Resumo:
CONTEXT Dementia care giving can lead to increased stress, physical and psychosocial morbidity, and mortality. Anecdotal evidence suggests that hospice care provided to people with dementia and their caregivers may buffer caregivers from some of the adverse outcomes associated with family caregiving in Alzheimer's Disease (AD). OBJECTIVES This pilot study examined psychological and physical outcomes among 32 spousal caregivers of patients with AD. It was hypothesized that caregivers who utilized hospice services would demonstrate better outcomes after the death of their spouse than caregivers who did not utilize hospice. METHODS The charts of all spousal caregivers enrolled in a larger longitudinal study from 2001 to 2006 (N=120) were reviewed, and participants whose spouse had died were identified. Of these, those who received hospice care (n=10) were compared to those who did not (n=22) for various physiological and psychological measures of stress, both before and after the death of the care recipient. An Analysis of Covariance (ANCOVA), with postdeath scores as the dependent variable and pre-death scores as covariates, was used for all variables. RESULTS Significant group differences were found in postdeath depressive symptoms (HAM-D; F(1,29)=6.10, p<0.05) and anxiety symptoms (HAM-A; F(1,29)=5.71, p<0.05). Most psychological outcome variables demonstrated moderate effect sizes with a Cohen's d of>0.5 between groups. CONCLUSIONS These data suggest that hospice enrollment may ameliorate the detrimental psychological effects in caregivers who have lost a spouse with Alzheimer's Disease. Based on these pilot data, further prospective investigation is warranted.
Resumo:
The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by circular singular value decomposition deconvolution maps (Tmax > 6 s) and results were compared with volumes obtained with non-deconvolved maps (time to peak > 4 s). Loss of penumbral volume was defined as difference of post- minus pretreatment diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between baseline characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collaterals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfusion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with 3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was -2% with -1.5 ml/h, indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatment.
Resumo:
Little is known about the course of recovery of acute low back pain (LBP) patients as a function of depression. In a prospective study, 286 acute LBP patients were assessed at baseline and followed up over 6 months. Recovery was defined as improvement in the Oswestry Disability Index (ODI). Repeated-measures analysis of covariance was employed with ODI as repeated factor, age, sex, and body mass index as covariates, depression and all other potential prognostic factors as between-subject factors. Of study participants, 18% were classified as depressive (>33 points on the Zung Self-Rating Depression Scale). Of 286 participants, 135 were lost to follow-up. In the longitudinal sample of 151 patients the course of recovery was slower in depressive patients. Depression was associated with LBP especially after 6 weeks and should therefore be included in screening instruments for acute LBP patients to identify those at risk of delayed recovery at an early stage.
Resumo:
Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.
Resumo:
INTRODUCTION: Experience-based adaptation of emotional responses is an important faculty for cognitive and emotional functioning. Professional musicians represent an ideal model in which to elicit experience-driven changes in the emotional processing domain. The changes of the central representation of emotional arousal due to musical expertise are still largely unknown. The aim of the present study was to investigate the electroencephalogram (EEG) correlates of experience-driven changes in the domain of emotional arousal. Therefore, the differences in perceived (subjective arousal via ratings) and physiologically measured (EEG) arousal between amateur and professional musicians were examined. PROCEDURE: A total of 15 professional and 19 amateur musicians listened to the first movement of Ludwig van Beethoven's 5th symphony (duration=∼7.4min), during which a continuous 76-channel EEG was recorded. In a second session, the participants evaluated their emotional arousal during listening. In a tonic analysis, we examined the average EEG data over the time course of the music piece. For a phasic analysis, a fast Fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. RESULTS: The subjective arousal ratings of the professional musicians were more consistent than those of the amateur musicians. In the tonic EEG analysis, a mid-frontal theta activity was observed in the professionals. In the phasic EEG, the professionals exhibited an increase of posterior alpha, central delta, and beta rhythm during high arousal. DISCUSSION: Professionals exhibited different and/or more intense patterns of emotional activation when they listened to the music. The results of the present study underscore the impact of music experience on emotional reactions.
Resumo:
Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.
Resumo:
Recently, many studies about a network active during rest and deactivated during tasks emerged in the literature: the default mode network (DMN). Spatial and temporal DMN features are important markers for psychiatric diseases. Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects. From these findings, the conclusion can be drawn that an increase in resting state DMN activity may go along with an increase in theta power in high-load WM conditions. We followed this hypothesis in a study on 17 healthy subjects performing a visual Sternberg WM task. The DMN was obtained by a BOLD-ICA approach and its dynamics represented by the percent-strength during pre-stimulus periods. DMN dynamics were temporally correlated with EEG theta spectral power from retention intervals. This so-called covariance mapping yielded the spatial distribution of the theta EEG fluctuations associated with the dynamics of the DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention. However, load-dependent correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance during later retention. Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over the course of the retention period. Since both, WM performance and DMN activity, are markers of mental health, our results could be important for further investigations of psychiatric populations.
Resumo:
Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.